Predicting the Isotropic Volumetric Compression Response of Hydrating Cemented Paste Backfill (CPB)

Deep and high-stress mining results in stress transfers onto the previously placed backfill, and mines have recorded several MPa induced backfill stresses. Understanding the backfill-rock mass interaction is therefore critical. Previous work considered tabular ore bodies undergoing primarily one-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2022-09, Vol.40 (9), p.4821-4836
Hauptverfasser: Jafari, Mohammadamin, Grabinsky, Murray
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep and high-stress mining results in stress transfers onto the previously placed backfill, and mines have recorded several MPa induced backfill stresses. Understanding the backfill-rock mass interaction is therefore critical. Previous work considered tabular ore bodies undergoing primarily one-dimensional compression and showed how the backfill reaction curves could be estimated from oedometer laboratory test results. This work considers massive orebodies and develops a similar approach based on isotropic compression curves. Isotropic compression tests exceeding 6 MPa are carried out on samples with 3.0 to 11.1% binder content, tested at 1-day cure time to 28-day cure time. The compression curve is characterized in three stages: initial elastic compression up to a yield point, followed by a transition stage to the start of a final stage with a linear post-yield compression line in ε v - log p ′ space. Because these isotropic compression tests are rare (the reported results are the first for Cemented Paste Backfill), attempts are made to relate the isotropic compression test parameters to parameters from the more commonly used Unconfined Compression Strength (UCS) tests. Unifying equations as functions of binder content and cure time are found to determine the initial yield stress and the peak strength from UCS tests. These are then related to the corresponding parameters in isotropic compression. Finally, the slope of the post-yield compression line is found as a function of UCS of similar CPB with the same binder content and cure time. Then the isotropic compression behavior of CPB is reconstructed as a function of binder content and curing time using UCS values of similar CPB. Although the calibrated parameters are specific to the studied mine’s materials, the framework is general and applicable to other mines’ CPBs.
ISSN:0960-3182
1573-1529
DOI:10.1007/s10706-022-02186-7