Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration

In this study, we propose a robust bi-objective optimization model of the green closed-loop supply chain network considering presorting, a heterogeneous transportation system, and carbon emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model that maximizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-08, Vol.14 (16), p.10281
Hauptverfasser: Kaoud, Essam, Abdel-Aal, Mohammad A. M, Sakaguchi, Tatsuhiko, Uchiyama, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 10281
container_title Sustainability
container_volume 14
creator Kaoud, Essam
Abdel-Aal, Mohammad A. M
Sakaguchi, Tatsuhiko
Uchiyama, Naoki
description In this study, we propose a robust bi-objective optimization model of the green closed-loop supply chain network considering presorting, a heterogeneous transportation system, and carbon emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model that maximizes profit and minimizes carbon emissions by considering uncertain costs, selling price, and carbon emissions. The robust optimization approach is implemented using the combined interval and polyhedral, “Interval+ Polyhedral,” uncertainty set to develop the robust counterpart of the proposed model. Robust Pareto optimal solutions are obtained using a lexicographic weighted Tchebycheff optimization approach of the bi-objective model. Intensive computational experiments are conducted and a robust Pareto optimal front is obtained with a probability guarantee that the constraints containing uncertain parameters are not violated (constraint satisfaction).
doi_str_mv 10.3390/su141610281
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2706445132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746959526</galeid><sourcerecordid>A746959526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-dac64123a04b654f9ff2f410b6923916f3a6dd66afad68fd6417bc7a8ed5ed53</originalsourceid><addsrcrecordid>eNpVkVFLwzAQx4soKOqTXyDgk0hn0rTp-qhF52AwcXsvaXOpGW1Sk1SdX8EvbXQ-uLuDO47f_47jouiC4AmlBb5xI0kJIziZkoPoJME5iQnO8OG_-jg6d26Dg1FKCsJOoq9nU4_Oo-XgVa8-uVdGI2ks4uhOxct6A41Xb4BmFkCjsjMORLwwZkCrcRi6LSpfuNLoXfkX9AgerGlBgxkdWluu3WCs381cbZ2HHnEt0JMFF_pKt6g02ikB9pc5i44k7xyc_-XTaP1wvy4f48VyNi9vF3FDc-JjwRuWkoRynNYsS2UhZSJTgmtWJDQcJSlnQjDGJRdsKkWA87rJ-RREFoKeRpe7sYM1ryM4X23MaHXYWCU5ZmmaEZoEarKjWt5BpbQ03vImuIBeNUaDVKF_m6esyIosYUFwtScIjIcP3_LRuWq-et5nr3dsY41zFmQ1WNVzu60Irn6eWf17Jv0GTSmTNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706445132</pqid></control><display><type>article</type><title>Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kaoud, Essam ; Abdel-Aal, Mohammad A. M ; Sakaguchi, Tatsuhiko ; Uchiyama, Naoki</creator><creatorcontrib>Kaoud, Essam ; Abdel-Aal, Mohammad A. M ; Sakaguchi, Tatsuhiko ; Uchiyama, Naoki</creatorcontrib><description>In this study, we propose a robust bi-objective optimization model of the green closed-loop supply chain network considering presorting, a heterogeneous transportation system, and carbon emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model that maximizes profit and minimizes carbon emissions by considering uncertain costs, selling price, and carbon emissions. The robust optimization approach is implemented using the combined interval and polyhedral, “Interval+ Polyhedral,” uncertainty set to develop the robust counterpart of the proposed model. Robust Pareto optimal solutions are obtained using a lexicographic weighted Tchebycheff optimization approach of the bi-objective model. Intensive computational experiments are conducted and a robust Pareto optimal front is obtained with a probability guarantee that the constraints containing uncertain parameters are not violated (constraint satisfaction).</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su141610281</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Carbon ; Computer applications ; Costs ; Customers ; Emissions ; Environmental aspects ; Linear programming ; Logistics ; Mathematical optimization ; Methods ; Optimization ; Optimization models ; Parameter uncertainty ; Supply chains ; Sustainability ; Transportation ; Transportation systems</subject><ispartof>Sustainability, 2022-08, Vol.14 (16), p.10281</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-dac64123a04b654f9ff2f410b6923916f3a6dd66afad68fd6417bc7a8ed5ed53</citedby><cites>FETCH-LOGICAL-c371t-dac64123a04b654f9ff2f410b6923916f3a6dd66afad68fd6417bc7a8ed5ed53</cites><orcidid>0000-0002-6367-2598 ; 0000-0002-0919-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kaoud, Essam</creatorcontrib><creatorcontrib>Abdel-Aal, Mohammad A. M</creatorcontrib><creatorcontrib>Sakaguchi, Tatsuhiko</creatorcontrib><creatorcontrib>Uchiyama, Naoki</creatorcontrib><title>Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration</title><title>Sustainability</title><description>In this study, we propose a robust bi-objective optimization model of the green closed-loop supply chain network considering presorting, a heterogeneous transportation system, and carbon emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model that maximizes profit and minimizes carbon emissions by considering uncertain costs, selling price, and carbon emissions. The robust optimization approach is implemented using the combined interval and polyhedral, “Interval+ Polyhedral,” uncertainty set to develop the robust counterpart of the proposed model. Robust Pareto optimal solutions are obtained using a lexicographic weighted Tchebycheff optimization approach of the bi-objective model. Intensive computational experiments are conducted and a robust Pareto optimal front is obtained with a probability guarantee that the constraints containing uncertain parameters are not violated (constraint satisfaction).</description><subject>Algorithms</subject><subject>Carbon</subject><subject>Computer applications</subject><subject>Costs</subject><subject>Customers</subject><subject>Emissions</subject><subject>Environmental aspects</subject><subject>Linear programming</subject><subject>Logistics</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Parameter uncertainty</subject><subject>Supply chains</subject><subject>Sustainability</subject><subject>Transportation</subject><subject>Transportation systems</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkVFLwzAQx4soKOqTXyDgk0hn0rTp-qhF52AwcXsvaXOpGW1Sk1SdX8EvbXQ-uLuDO47f_47jouiC4AmlBb5xI0kJIziZkoPoJME5iQnO8OG_-jg6d26Dg1FKCsJOoq9nU4_Oo-XgVa8-uVdGI2ks4uhOxct6A41Xb4BmFkCjsjMORLwwZkCrcRi6LSpfuNLoXfkX9AgerGlBgxkdWluu3WCs381cbZ2HHnEt0JMFF_pKt6g02ikB9pc5i44k7xyc_-XTaP1wvy4f48VyNi9vF3FDc-JjwRuWkoRynNYsS2UhZSJTgmtWJDQcJSlnQjDGJRdsKkWA87rJ-RREFoKeRpe7sYM1ryM4X23MaHXYWCU5ZmmaEZoEarKjWt5BpbQ03vImuIBeNUaDVKF_m6esyIosYUFwtScIjIcP3_LRuWq-et5nr3dsY41zFmQ1WNVzu60Irn6eWf17Jv0GTSmTNA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kaoud, Essam</creator><creator>Abdel-Aal, Mohammad A. M</creator><creator>Sakaguchi, Tatsuhiko</creator><creator>Uchiyama, Naoki</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6367-2598</orcidid><orcidid>https://orcid.org/0000-0002-0919-9699</orcidid></search><sort><creationdate>20220801</creationdate><title>Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration</title><author>Kaoud, Essam ; Abdel-Aal, Mohammad A. M ; Sakaguchi, Tatsuhiko ; Uchiyama, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-dac64123a04b654f9ff2f410b6923916f3a6dd66afad68fd6417bc7a8ed5ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Carbon</topic><topic>Computer applications</topic><topic>Costs</topic><topic>Customers</topic><topic>Emissions</topic><topic>Environmental aspects</topic><topic>Linear programming</topic><topic>Logistics</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Parameter uncertainty</topic><topic>Supply chains</topic><topic>Sustainability</topic><topic>Transportation</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaoud, Essam</creatorcontrib><creatorcontrib>Abdel-Aal, Mohammad A. M</creatorcontrib><creatorcontrib>Sakaguchi, Tatsuhiko</creatorcontrib><creatorcontrib>Uchiyama, Naoki</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaoud, Essam</au><au>Abdel-Aal, Mohammad A. M</au><au>Sakaguchi, Tatsuhiko</au><au>Uchiyama, Naoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration</atitle><jtitle>Sustainability</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>16</issue><spage>10281</spage><pages>10281-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In this study, we propose a robust bi-objective optimization model of the green closed-loop supply chain network considering presorting, a heterogeneous transportation system, and carbon emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model that maximizes profit and minimizes carbon emissions by considering uncertain costs, selling price, and carbon emissions. The robust optimization approach is implemented using the combined interval and polyhedral, “Interval+ Polyhedral,” uncertainty set to develop the robust counterpart of the proposed model. Robust Pareto optimal solutions are obtained using a lexicographic weighted Tchebycheff optimization approach of the bi-objective model. Intensive computational experiments are conducted and a robust Pareto optimal front is obtained with a probability guarantee that the constraints containing uncertain parameters are not violated (constraint satisfaction).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su141610281</doi><orcidid>https://orcid.org/0000-0002-6367-2598</orcidid><orcidid>https://orcid.org/0000-0002-0919-9699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-08, Vol.14 (16), p.10281
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2706445132
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Carbon
Computer applications
Costs
Customers
Emissions
Environmental aspects
Linear programming
Logistics
Mathematical optimization
Methods
Optimization
Optimization models
Parameter uncertainty
Supply chains
Sustainability
Transportation
Transportation systems
title Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Optimization%20for%20a%20Bi-Objective%20Green%20Closed-Loop%20Supply%20Chain%20with%20Heterogeneous%20Transportation%20System%20and%20Presorting%20Consideration&rft.jtitle=Sustainability&rft.au=Kaoud,%20Essam&rft.date=2022-08-01&rft.volume=14&rft.issue=16&rft.spage=10281&rft.pages=10281-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su141610281&rft_dat=%3Cgale_proqu%3EA746959526%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706445132&rft_id=info:pmid/&rft_galeid=A746959526&rfr_iscdi=true