Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration

In this study, we propose a robust bi-objective optimization model of the green closed-loop supply chain network considering presorting, a heterogeneous transportation system, and carbon emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model that maximizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-08, Vol.14 (16), p.10281
Hauptverfasser: Kaoud, Essam, Abdel-Aal, Mohammad A. M, Sakaguchi, Tatsuhiko, Uchiyama, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we propose a robust bi-objective optimization model of the green closed-loop supply chain network considering presorting, a heterogeneous transportation system, and carbon emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model that maximizes profit and minimizes carbon emissions by considering uncertain costs, selling price, and carbon emissions. The robust optimization approach is implemented using the combined interval and polyhedral, “Interval+ Polyhedral,” uncertainty set to develop the robust counterpart of the proposed model. Robust Pareto optimal solutions are obtained using a lexicographic weighted Tchebycheff optimization approach of the bi-objective model. Intensive computational experiments are conducted and a robust Pareto optimal front is obtained with a probability guarantee that the constraints containing uncertain parameters are not violated (constraint satisfaction).
ISSN:2071-1050
2071-1050
DOI:10.3390/su141610281