Spatiotemporal Changes in the Supply and Demand of Ecosystem Services in China’s Huai River Basin and Their Influencing Factors
An imbalance between the supply and demand of ecosystem services can cause ecological problems. By determining the spatiotemporal changes in the supply and demand and the factors underlying these changes, the ecosystem service supply in river basins can be increased to match the demand; this informa...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-08, Vol.14 (16), p.2559 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An imbalance between the supply and demand of ecosystem services can cause ecological problems. By determining the spatiotemporal changes in the supply and demand and the factors underlying these changes, the ecosystem service supply in river basins can be increased to match the demand; this information has great significance for the sustainable development of the basin. By focusing on the cities in China’s Huai River Basin, the data on ecosystem service supply and demand from 2010 to 2020 were measured using supply–demand matrices, and the spatiotemporal characteristics of the supply–demand balance were analyzed using the supply–demand index and Moran’s I statistics. Next, geographical detectors and multiscale geographically weighted regression models were used to examine the factors influencing the spatiotemporal changes in ecosystem service supply and demand and their spatial effects. The results indicated the following: (1) From 2010 to 2020, ecosystem service supply in the Huai River Basin decreased by 2.51 × 108, whereas the ecosystem service demand increased by 4.43 × 108; in general, the demand exceeded the supply, and 69.74% cities were in a state of deficit. (2) The Moran’s I index of the ecosystem service supply and demand was greater than 0.4, which means that there was a strong spatial clustering, and the characteristics of high–high clusters gradually weakened and those of low–low clusters enhanced in the northern and eastern cities. (3) The q values of the ecological-use land area, construction-use land area, rain, and temperature were greater than 0.3, indicating a significant effect on the supply and demand. These findings can provide a targeted reference and basis for the ecological management of the Huai River Basin. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w14162559 |