The Fixed Points and Cross-Ratios of Hyperbolic Möbius Transformations in Bicomplex Space
The hyperbolic Möbius transformations, which have been defined and proved to be hyperbolic conformal in Golberg and Luna-Elizarrarás (Math Methods Appl Sci 2020, https://doi.org/10.1002/mma.7109 ), are generalizations of Möbius transformations in complex space C ( i ) and hyperbolic space D to multi...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2022-09, Vol.32 (4), Article 48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hyperbolic Möbius transformations, which have been defined and proved to be hyperbolic conformal in Golberg and Luna-Elizarrarás (Math Methods Appl Sci 2020,
https://doi.org/10.1002/mma.7109
), are generalizations of Möbius transformations in complex space
C
(
i
)
and hyperbolic space
D
to multidimensional hyperbolic space
D
n
. In this paper, we study the hyperbolic Möbius transformation in bicomplex space
B
C
isomorphic to
D
2
in detail, present a conjugacy classification according to the number of fixed points in
S
L
(
2
,
B
C
)
, and detailedly prove that the cross-ratio is invariant under hyperbolic Möbius transformations. Furthermore, the present paper generalizes the classical results, which have closed relation with fixed points and cross-ratios, to
B
C
and may give new energy for the development of hyperbolic Möbius groups. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-022-01231-1 |