The Fixed Points and Cross-Ratios of Hyperbolic Möbius Transformations in Bicomplex Space

The hyperbolic Möbius transformations, which have been defined and proved to be hyperbolic conformal in Golberg and Luna-Elizarrarás (Math Methods Appl Sci 2020, https://doi.org/10.1002/mma.7109 ), are generalizations of Möbius transformations in complex space C ( i ) and hyperbolic space D to multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2022-09, Vol.32 (4), Article 48
Hauptverfasser: Chen, Litao, Dai, Binlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hyperbolic Möbius transformations, which have been defined and proved to be hyperbolic conformal in Golberg and Luna-Elizarrarás (Math Methods Appl Sci 2020, https://doi.org/10.1002/mma.7109 ), are generalizations of Möbius transformations in complex space C ( i ) and hyperbolic space D to multidimensional hyperbolic space D n . In this paper, we study the hyperbolic Möbius transformation in bicomplex space B C isomorphic to D 2 in detail, present a conjugacy classification according to the number of fixed points in S L ( 2 , B C ) , and detailedly prove that the cross-ratio is invariant under hyperbolic Möbius transformations. Furthermore, the present paper generalizes the classical results, which have closed relation with fixed points and cross-ratios, to B C and may give new energy for the development of hyperbolic Möbius groups.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-022-01231-1