The Influence of Anion-Stripped MIL-101(Cr) Dispersed in Thin-Film Polyvinyl Alcohol Membrane Matrix on the Methylene Blue Dye Separation

This study investigates the production and performance of a novel nanofiltration membrane for removal of cationic dye (Methylene blue) and multivalent cations. These positively charged membranes are made by dispersing a modified cationic metal–organic framework, Cl-MIL-101(Cr), into the polyvinyl al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-08, Vol.12 (8), p.1148
Hauptverfasser: Mehdipour Ghazi, Mohsen, Bagherian, Abbas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the production and performance of a novel nanofiltration membrane for removal of cationic dye (Methylene blue) and multivalent cations. These positively charged membranes are made by dispersing a modified cationic metal–organic framework, Cl-MIL-101(Cr), into the polyvinyl alcohol matrix as a membrane skin layer. To this end, the mobile anion (Cl−) embedded in the MIL-101(Cr) structure plays a role to create a positive partial charge on the membrane. In this study, the effects of MOF content and their types on the membrane structure were considered by FTIR, XRD, FESEM, Zeta potential and water contact angle. The results have shown that membranes filled with Cl-MIL-101(Cr) attained higher permeate flux and rejection than those of MIL-101(Cr). Particularly, this study indicates that the low irreversible resistance (19.49%) and high flux return ratio (80.50%) have been related to the membrane containing 15% cationic Cl-MIL-101(Cr). However, this membrane rejected more than 30.41% of AlCl3 salt and 99.08% of methylene blue with approximate permeate flux of 20 L/m2·h. It is recommended that the fabricated membrane be placed in the flow path process of cationic dyes purification.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings12081148