Deep Visual Constraints: Neural Implicit Models for Manipulation Planning From Visual Input
Manipulation planning is the problem of finding a sequence of robot configurations that involves interactions with objects in the scene, e.g., grasping and placing an object, or more general tool-use. To achieve such interactions, traditional approaches require hand-engineering of object representat...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-10, Vol.7 (4), p.10857-10864 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manipulation planning is the problem of finding a sequence of robot configurations that involves interactions with objects in the scene, e.g., grasping and placing an object, or more general tool-use. To achieve such interactions, traditional approaches require hand-engineering of object representations and interaction constraints, which easily becomes tedious when complex objects/interactions are considered. Inspired by recent advances in 3D modeling, e.g. NeRF, we propose a method to represent objects as continuous functions upon which constraint features are defined and jointly trained. In particular, the proposed pixel-aligned representation is directly inferred from images with known camera geometry and naturally acts as a perception component in the whole manipulation pipeline, thereby enabling long-horizon planning only from visual input . |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2022.3194955 |