Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem
We prove an explicit Chebotarev variant of the Brun--Titchmarsh theorem. This leads to explicit versions of the best-known unconditional upper bounds toward conjectures of Lang and Trotter for the coefficients of holomorphic cuspidal newforms. In particular, we prove that $$\lim_{x \to \infty} \frac...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove an explicit Chebotarev variant of the Brun--Titchmarsh theorem. This leads to explicit versions of the best-known unconditional upper bounds toward conjectures of Lang and Trotter for the coefficients of holomorphic cuspidal newforms. In particular, we prove that $$\lim_{x \to \infty} \frac{\#\{1 \leq n \leq x \mid \tau(n) \neq 0\}}{x} > 1-1.15 \times 10^{-12},$$ where \(\tau(n)\) is Ramanujan's tau-function. This is the first known positive unconditional lower bound for the proportion of positive integers \(n\) such that \(\tau(n) \neq 0\). |
---|---|
ISSN: | 2331-8422 |