High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism

Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2022-08, Vol.219 (16), p.n/a
Hauptverfasser: Wang, Qiuhui, Zhang, Xuguo, Xu, Jie, Chen, Zixin, Kuang, Xuliang, Zeng, Jundong, Liu, Weijing, Bai, Wei, Tang, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 219
creator Wang, Qiuhui
Zhang, Xuguo
Xu, Jie
Chen, Zixin
Kuang, Xuliang
Zeng, Jundong
Liu, Weijing
Bai, Wei
Tang, Xiaodong
description Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors. Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling.
doi_str_mv 10.1002/pssa.202100674
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2704760674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704760674</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2334-411bf16d6a8eb5fd9fd87852699cab3b7689015ea9cc835a279d4d2b9a98d72b3</originalsourceid><addsrcrecordid>eNo9kLFOwzAYhC0EEqWwMltiTrGdxI7HUgFFKrRSYGGx7NhpXaVOsBNo34CZR-RJaFTU6b87ne6XPgCuMRphhMhtE4IcEUT2hrLkBAxwRklEY8xPjxqhc3ARwhqhJE0YHgAztcsVzI0LtrWftt3Babexuhd9WPsA72QwGtYOvjv8-_2zzd12Dl-kq0Pru6LtvAlQOg0XleyCVZU5zLklfDbFSjobNpfgrJRVMFf_dwjeHu5fJ9NoNn98moxnUUPiOIkSjFWJqaYyMyotNS91xrKUUM4LqWLFaMYRTo3kRZHFqSSM60QTxSXPNCMqHoKbw27j64_OhFas6867_UtBGEoY7cnsW_zQ-rKV2YnG2430O4GR6DmKnqM4chSLPB8fXfwHJ6xrYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704760674</pqid></control><display><type>article</type><title>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Qiuhui ; Zhang, Xuguo ; Xu, Jie ; Chen, Zixin ; Kuang, Xuliang ; Zeng, Jundong ; Liu, Weijing ; Bai, Wei ; Tang, Xiaodong</creator><creatorcontrib>Wang, Qiuhui ; Zhang, Xuguo ; Xu, Jie ; Chen, Zixin ; Kuang, Xuliang ; Zeng, Jundong ; Liu, Weijing ; Bai, Wei ; Tang, Xiaodong</creatorcontrib><description>Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors. Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100674</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Dielectrophoresis ; Doping ; Humidity ; humidity sensors ; Lattice vacancies ; Multilayers ; Nanosensors ; Nanostructure ; Nanowires ; Oxygen ; oxygen vacancies ; Photoelectrons ; Recovery time ; sensing properties ; Sensitivity ; Sensors ; Sn doping ; Spectrum analysis ; X ray photoelectron spectroscopy ; Zinc oxide ; zinc oxide nanostructures</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-08, Vol.219 (16), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3205-3601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Qiuhui</creatorcontrib><creatorcontrib>Zhang, Xuguo</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Chen, Zixin</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Zeng, Jundong</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><title>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</title><title>Physica status solidi. A, Applications and materials science</title><description>Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors. Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling.</description><subject>Dielectrophoresis</subject><subject>Doping</subject><subject>Humidity</subject><subject>humidity sensors</subject><subject>Lattice vacancies</subject><subject>Multilayers</subject><subject>Nanosensors</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Oxygen</subject><subject>oxygen vacancies</subject><subject>Photoelectrons</subject><subject>Recovery time</subject><subject>sensing properties</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Sn doping</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><subject>zinc oxide nanostructures</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAYhC0EEqWwMltiTrGdxI7HUgFFKrRSYGGx7NhpXaVOsBNo34CZR-RJaFTU6b87ne6XPgCuMRphhMhtE4IcEUT2hrLkBAxwRklEY8xPjxqhc3ARwhqhJE0YHgAztcsVzI0LtrWftt3Babexuhd9WPsA72QwGtYOvjv8-_2zzd12Dl-kq0Pru6LtvAlQOg0XleyCVZU5zLklfDbFSjobNpfgrJRVMFf_dwjeHu5fJ9NoNn98moxnUUPiOIkSjFWJqaYyMyotNS91xrKUUM4LqWLFaMYRTo3kRZHFqSSM60QTxSXPNCMqHoKbw27j64_OhFas6867_UtBGEoY7cnsW_zQ-rKV2YnG2430O4GR6DmKnqM4chSLPB8fXfwHJ6xrYA</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Wang, Qiuhui</creator><creator>Zhang, Xuguo</creator><creator>Xu, Jie</creator><creator>Chen, Zixin</creator><creator>Kuang, Xuliang</creator><creator>Zeng, Jundong</creator><creator>Liu, Weijing</creator><creator>Bai, Wei</creator><creator>Tang, Xiaodong</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></search><sort><creationdate>202208</creationdate><title>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</title><author>Wang, Qiuhui ; Zhang, Xuguo ; Xu, Jie ; Chen, Zixin ; Kuang, Xuliang ; Zeng, Jundong ; Liu, Weijing ; Bai, Wei ; Tang, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2334-411bf16d6a8eb5fd9fd87852699cab3b7689015ea9cc835a279d4d2b9a98d72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dielectrophoresis</topic><topic>Doping</topic><topic>Humidity</topic><topic>humidity sensors</topic><topic>Lattice vacancies</topic><topic>Multilayers</topic><topic>Nanosensors</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Oxygen</topic><topic>oxygen vacancies</topic><topic>Photoelectrons</topic><topic>Recovery time</topic><topic>sensing properties</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Sn doping</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><topic>zinc oxide nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiuhui</creatorcontrib><creatorcontrib>Zhang, Xuguo</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Chen, Zixin</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Zeng, Jundong</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiuhui</au><au>Zhang, Xuguo</au><au>Xu, Jie</au><au>Chen, Zixin</au><au>Kuang, Xuliang</au><au>Zeng, Jundong</au><au>Liu, Weijing</au><au>Bai, Wei</au><au>Tang, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-08</date><risdate>2022</risdate><volume>219</volume><issue>16</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors. Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202100674</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2022-08, Vol.219 (16), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2704760674
source Wiley Online Library Journals Frontfile Complete
subjects Dielectrophoresis
Doping
Humidity
humidity sensors
Lattice vacancies
Multilayers
Nanosensors
Nanostructure
Nanowires
Oxygen
oxygen vacancies
Photoelectrons
Recovery time
sensing properties
Sensitivity
Sensors
Sn doping
Spectrum analysis
X ray photoelectron spectroscopy
Zinc oxide
zinc oxide nanostructures
title High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T15%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Sensitivity%20Humidity%20Sensors%20Based%20on%20Zn1%E2%88%92xSnxO%20Nanostructures%20and%20Plausible%20Sensing%20Mechanism&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Wang,%20Qiuhui&rft.date=2022-08&rft.volume=219&rft.issue=16&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100674&rft_dat=%3Cproquest_wiley%3E2704760674%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704760674&rft_id=info:pmid/&rfr_iscdi=true