High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism
Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructur...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2022-08, Vol.219 (16), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 219 |
creator | Wang, Qiuhui Zhang, Xuguo Xu, Jie Chen, Zixin Kuang, Xuliang Zeng, Jundong Liu, Weijing Bai, Wei Tang, Xiaodong |
description | Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors.
Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling. |
doi_str_mv | 10.1002/pssa.202100674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2704760674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704760674</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2334-411bf16d6a8eb5fd9fd87852699cab3b7689015ea9cc835a279d4d2b9a98d72b3</originalsourceid><addsrcrecordid>eNo9kLFOwzAYhC0EEqWwMltiTrGdxI7HUgFFKrRSYGGx7NhpXaVOsBNo34CZR-RJaFTU6b87ne6XPgCuMRphhMhtE4IcEUT2hrLkBAxwRklEY8xPjxqhc3ARwhqhJE0YHgAztcsVzI0LtrWftt3Babexuhd9WPsA72QwGtYOvjv8-_2zzd12Dl-kq0Pru6LtvAlQOg0XleyCVZU5zLklfDbFSjobNpfgrJRVMFf_dwjeHu5fJ9NoNn98moxnUUPiOIkSjFWJqaYyMyotNS91xrKUUM4LqWLFaMYRTo3kRZHFqSSM60QTxSXPNCMqHoKbw27j64_OhFas6867_UtBGEoY7cnsW_zQ-rKV2YnG2430O4GR6DmKnqM4chSLPB8fXfwHJ6xrYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704760674</pqid></control><display><type>article</type><title>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Qiuhui ; Zhang, Xuguo ; Xu, Jie ; Chen, Zixin ; Kuang, Xuliang ; Zeng, Jundong ; Liu, Weijing ; Bai, Wei ; Tang, Xiaodong</creator><creatorcontrib>Wang, Qiuhui ; Zhang, Xuguo ; Xu, Jie ; Chen, Zixin ; Kuang, Xuliang ; Zeng, Jundong ; Liu, Weijing ; Bai, Wei ; Tang, Xiaodong</creatorcontrib><description>Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors.
Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100674</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Dielectrophoresis ; Doping ; Humidity ; humidity sensors ; Lattice vacancies ; Multilayers ; Nanosensors ; Nanostructure ; Nanowires ; Oxygen ; oxygen vacancies ; Photoelectrons ; Recovery time ; sensing properties ; Sensitivity ; Sensors ; Sn doping ; Spectrum analysis ; X ray photoelectron spectroscopy ; Zinc oxide ; zinc oxide nanostructures</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-08, Vol.219 (16), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3205-3601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Qiuhui</creatorcontrib><creatorcontrib>Zhang, Xuguo</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Chen, Zixin</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Zeng, Jundong</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><title>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</title><title>Physica status solidi. A, Applications and materials science</title><description>Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors.
Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling.</description><subject>Dielectrophoresis</subject><subject>Doping</subject><subject>Humidity</subject><subject>humidity sensors</subject><subject>Lattice vacancies</subject><subject>Multilayers</subject><subject>Nanosensors</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Oxygen</subject><subject>oxygen vacancies</subject><subject>Photoelectrons</subject><subject>Recovery time</subject><subject>sensing properties</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Sn doping</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><subject>zinc oxide nanostructures</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAYhC0EEqWwMltiTrGdxI7HUgFFKrRSYGGx7NhpXaVOsBNo34CZR-RJaFTU6b87ne6XPgCuMRphhMhtE4IcEUT2hrLkBAxwRklEY8xPjxqhc3ARwhqhJE0YHgAztcsVzI0LtrWftt3Babexuhd9WPsA72QwGtYOvjv8-_2zzd12Dl-kq0Pru6LtvAlQOg0XleyCVZU5zLklfDbFSjobNpfgrJRVMFf_dwjeHu5fJ9NoNn98moxnUUPiOIkSjFWJqaYyMyotNS91xrKUUM4LqWLFaMYRTo3kRZHFqSSM60QTxSXPNCMqHoKbw27j64_OhFas6867_UtBGEoY7cnsW_zQ-rKV2YnG2430O4GR6DmKnqM4chSLPB8fXfwHJ6xrYA</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Wang, Qiuhui</creator><creator>Zhang, Xuguo</creator><creator>Xu, Jie</creator><creator>Chen, Zixin</creator><creator>Kuang, Xuliang</creator><creator>Zeng, Jundong</creator><creator>Liu, Weijing</creator><creator>Bai, Wei</creator><creator>Tang, Xiaodong</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></search><sort><creationdate>202208</creationdate><title>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</title><author>Wang, Qiuhui ; Zhang, Xuguo ; Xu, Jie ; Chen, Zixin ; Kuang, Xuliang ; Zeng, Jundong ; Liu, Weijing ; Bai, Wei ; Tang, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2334-411bf16d6a8eb5fd9fd87852699cab3b7689015ea9cc835a279d4d2b9a98d72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dielectrophoresis</topic><topic>Doping</topic><topic>Humidity</topic><topic>humidity sensors</topic><topic>Lattice vacancies</topic><topic>Multilayers</topic><topic>Nanosensors</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Oxygen</topic><topic>oxygen vacancies</topic><topic>Photoelectrons</topic><topic>Recovery time</topic><topic>sensing properties</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Sn doping</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><topic>zinc oxide nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiuhui</creatorcontrib><creatorcontrib>Zhang, Xuguo</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Chen, Zixin</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Zeng, Jundong</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiuhui</au><au>Zhang, Xuguo</au><au>Xu, Jie</au><au>Chen, Zixin</au><au>Kuang, Xuliang</au><au>Zeng, Jundong</au><au>Liu, Weijing</au><au>Bai, Wei</au><au>Tang, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-08</date><risdate>2022</risdate><volume>219</volume><issue>16</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Four kinds of Zn1−xSnxO (X = 0%, 1%, 3%, 5%) nanowires with different concentrations are synthesized by a hydrothermal method. The samples are characterized and measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and X‐Ray photoelectron spectroscopy (XPS). Then, the nanostructures are arranged on predesigned Ti/Au electrodes through the dielectrophoresis (DEP) nanomanipulation technique to fabricate four humidity sensors and investigate the humidity sensing properties. The results demonstrate that the Sn doping process can regulate the surface oxygen vacancy concentration and improve the performance of humidity sensors. In particular, the 3% Sn‐doped ZnO humidity sensor exhibits higher sensitivity with a response/recovery time of 4s/2s, lower hysteresis, and better repeatability. In addition, the sensing mechanisms are discussed in depth by combining complex impedance spectroscopy and multilayer adsorption theory. The obtained results indicate that a certain amount of Sn doping can introduce oxygen vacancies, adjust the lattice and surface state, and hence modulate the sensing properties of ZnO nanosensors.
Sn ions are successfully doped into ZnO lattice and regulate the materials oxygen defect concentration, making humidity sensors on the predesigned Ti/Au interdigital electrode by a dielectrophoresis method. The humidity sensing performance of ZnO is significantly enhanced after Sn doping. The humidity sensing mechanism of the sensors is studied by combining complex impedance spectroscopy and Freundlich isotherm modelling.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202100674</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2022-08, Vol.219 (16), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2704760674 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Dielectrophoresis Doping Humidity humidity sensors Lattice vacancies Multilayers Nanosensors Nanostructure Nanowires Oxygen oxygen vacancies Photoelectrons Recovery time sensing properties Sensitivity Sensors Sn doping Spectrum analysis X ray photoelectron spectroscopy Zinc oxide zinc oxide nanostructures |
title | High Sensitivity Humidity Sensors Based on Zn1−xSnxO Nanostructures and Plausible Sensing Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T15%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Sensitivity%20Humidity%20Sensors%20Based%20on%20Zn1%E2%88%92xSnxO%20Nanostructures%20and%20Plausible%20Sensing%20Mechanism&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Wang,%20Qiuhui&rft.date=2022-08&rft.volume=219&rft.issue=16&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100674&rft_dat=%3Cproquest_wiley%3E2704760674%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704760674&rft_id=info:pmid/&rfr_iscdi=true |