High accuracy analysis of a nonconforming rectangular finite element method for the Brinkman model
We propose a simple nonconforming rectangular finite element method for the Brinkman model. The velocity space is edge-oriented, in which the local space of each component is P 2 plus the span of a cubic monomial, and the pressure space is piecewise linear. We prove that, if the mesh is uniform, thi...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2022-09, Vol.41 (6), Article 288 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a simple nonconforming rectangular finite element method for the Brinkman model. The velocity space is edge-oriented, in which the local space of each component is
P
2
plus the span of a cubic monomial, and the pressure space is piecewise linear. We prove that, if the mesh is uniform, this method is uniformly convergent with respect to the given parameters, with the convergence order
O
(
h
2
)
in a mesh- and parameter-dependent norm for the velocity and in
L
2
-norm for the pressure. Moreover, for the Stokes problem we show the velocity convergence order in
L
2
-norm reaches
O
(
h
3
)
provided the solution and the domain are sufficiently regular. The key idea is based on the consistency error estimates by a tangent-normal switching strategy. Numerical tests confirm our theory. |
---|---|
ISSN: | 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-022-01997-x |