Minimal silting modules and ring extensions
Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting m...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2022-09, Vol.65 (9), p.1775-1794 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1794 |
---|---|
container_issue | 9 |
container_start_page | 1775 |
container_title | Science China. Mathematics |
container_volume | 65 |
creator | Hügel, Lidia Angeleri Cao, Weiqing |
description | Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension. |
doi_str_mv | 10.1007/s11425-020-1898-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704282317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704282317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgMM4HuCu4lOhN0uaxlMEXjLjRdcir0qGT1qQD-vemVHDl3dwH55zLOQhdErghAOI2E1LTBgMFTKSSmJ-gFZFclY3T0zJzUWNBJTtHm5z3UIopqAVboeuXLnYH01e566cuflSHwR_7kCsTfZXmQ_iaQszdEPMFOmtNn8Pmt6_R-8P92_YJ714fn7d3O-wY4RP2lNXgg_PciaCYEs5LoYSxynLBqSWuNQzAStMKC5a7hraNdIaFQH2oga3R1aI7puHzGPKk98MxxfJSUwE1lZQRUVBkQbk05JxCq8dUnKRvTUDPseglFl1i0XMsmhcOXTh5nL2F9Kf8P-kHPBxkXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704282317</pqid></control><display><type>article</type><title>Minimal silting modules and ring extensions</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hügel, Lidia Angeleri ; Cao, Weiqing</creator><creatorcontrib>Hügel, Lidia Angeleri ; Cao, Weiqing</creatorcontrib><description>Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-020-1898-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Homology ; Mathematics ; Mathematics and Statistics ; Modules ; Rings (mathematics)</subject><ispartof>Science China. Mathematics, 2022-09, Vol.65 (9), p.1775-1794</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</citedby><cites>FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-020-1898-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-020-1898-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hügel, Lidia Angeleri</creatorcontrib><creatorcontrib>Cao, Weiqing</creatorcontrib><title>Minimal silting modules and ring extensions</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.</description><subject>Applications of Mathematics</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Rings (mathematics)</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgMM4HuCu4lOhN0uaxlMEXjLjRdcir0qGT1qQD-vemVHDl3dwH55zLOQhdErghAOI2E1LTBgMFTKSSmJ-gFZFclY3T0zJzUWNBJTtHm5z3UIopqAVboeuXLnYH01e566cuflSHwR_7kCsTfZXmQ_iaQszdEPMFOmtNn8Pmt6_R-8P92_YJ714fn7d3O-wY4RP2lNXgg_PciaCYEs5LoYSxynLBqSWuNQzAStMKC5a7hraNdIaFQH2oga3R1aI7puHzGPKk98MxxfJSUwE1lZQRUVBkQbk05JxCq8dUnKRvTUDPseglFl1i0XMsmhcOXTh5nL2F9Kf8P-kHPBxkXA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Hügel, Lidia Angeleri</creator><creator>Cao, Weiqing</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Minimal silting modules and ring extensions</title><author>Hügel, Lidia Angeleri ; Cao, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hügel, Lidia Angeleri</creatorcontrib><creatorcontrib>Cao, Weiqing</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hügel, Lidia Angeleri</au><au>Cao, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal silting modules and ring extensions</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>65</volume><issue>9</issue><spage>1775</spage><epage>1794</epage><pages>1775-1794</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-020-1898-6</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2022-09, Vol.65 (9), p.1775-1794 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2704282317 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Homology Mathematics Mathematics and Statistics Modules Rings (mathematics) |
title | Minimal silting modules and ring extensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20silting%20modules%20and%20ring%20extensions&rft.jtitle=Science%20China.%20Mathematics&rft.au=H%C3%BCgel,%20Lidia%20Angeleri&rft.date=2022-09-01&rft.volume=65&rft.issue=9&rft.spage=1775&rft.epage=1794&rft.pages=1775-1794&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-020-1898-6&rft_dat=%3Cproquest_cross%3E2704282317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704282317&rft_id=info:pmid/&rfr_iscdi=true |