Minimal silting modules and ring extensions

Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2022-09, Vol.65 (9), p.1775-1794
Hauptverfasser: Hügel, Lidia Angeleri, Cao, Weiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1794
container_issue 9
container_start_page 1775
container_title Science China. Mathematics
container_volume 65
creator Hügel, Lidia Angeleri
Cao, Weiqing
description Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.
doi_str_mv 10.1007/s11425-020-1898-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704282317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704282317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgMM4HuCu4lOhN0uaxlMEXjLjRdcir0qGT1qQD-vemVHDl3dwH55zLOQhdErghAOI2E1LTBgMFTKSSmJ-gFZFclY3T0zJzUWNBJTtHm5z3UIopqAVboeuXLnYH01e566cuflSHwR_7kCsTfZXmQ_iaQszdEPMFOmtNn8Pmt6_R-8P92_YJ714fn7d3O-wY4RP2lNXgg_PciaCYEs5LoYSxynLBqSWuNQzAStMKC5a7hraNdIaFQH2oga3R1aI7puHzGPKk98MxxfJSUwE1lZQRUVBkQbk05JxCq8dUnKRvTUDPseglFl1i0XMsmhcOXTh5nL2F9Kf8P-kHPBxkXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704282317</pqid></control><display><type>article</type><title>Minimal silting modules and ring extensions</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hügel, Lidia Angeleri ; Cao, Weiqing</creator><creatorcontrib>Hügel, Lidia Angeleri ; Cao, Weiqing</creatorcontrib><description>Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-020-1898-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Homology ; Mathematics ; Mathematics and Statistics ; Modules ; Rings (mathematics)</subject><ispartof>Science China. Mathematics, 2022-09, Vol.65 (9), p.1775-1794</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</citedby><cites>FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-020-1898-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-020-1898-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hügel, Lidia Angeleri</creatorcontrib><creatorcontrib>Cao, Weiqing</creatorcontrib><title>Minimal silting modules and ring extensions</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.</description><subject>Applications of Mathematics</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Rings (mathematics)</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgMM4HuCu4lOhN0uaxlMEXjLjRdcir0qGT1qQD-vemVHDl3dwH55zLOQhdErghAOI2E1LTBgMFTKSSmJ-gFZFclY3T0zJzUWNBJTtHm5z3UIopqAVboeuXLnYH01e566cuflSHwR_7kCsTfZXmQ_iaQszdEPMFOmtNn8Pmt6_R-8P92_YJ714fn7d3O-wY4RP2lNXgg_PciaCYEs5LoYSxynLBqSWuNQzAStMKC5a7hraNdIaFQH2oga3R1aI7puHzGPKk98MxxfJSUwE1lZQRUVBkQbk05JxCq8dUnKRvTUDPseglFl1i0XMsmhcOXTh5nL2F9Kf8P-kHPBxkXA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Hügel, Lidia Angeleri</creator><creator>Cao, Weiqing</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Minimal silting modules and ring extensions</title><author>Hügel, Lidia Angeleri ; Cao, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d2340decd6c7e9397cd8797ab9b6762b1cfa300b8af7b0b6c52f58ca3ee2de403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hügel, Lidia Angeleri</creatorcontrib><creatorcontrib>Cao, Weiqing</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hügel, Lidia Angeleri</au><au>Cao, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal silting modules and ring extensions</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>65</volume><issue>9</issue><spage>1775</spage><epage>1794</epage><pages>1775-1794</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-020-1898-6</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2022-09, Vol.65 (9), p.1775-1794
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2704282317
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Homology
Mathematics
Mathematics and Statistics
Modules
Rings (mathematics)
title Minimal silting modules and ring extensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20silting%20modules%20and%20ring%20extensions&rft.jtitle=Science%20China.%20Mathematics&rft.au=H%C3%BCgel,%20Lidia%20Angeleri&rft.date=2022-09-01&rft.volume=65&rft.issue=9&rft.spage=1775&rft.epage=1794&rft.pages=1775-1794&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-020-1898-6&rft_dat=%3Cproquest_cross%3E2704282317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704282317&rft_id=info:pmid/&rfr_iscdi=true