Minimal silting modules and ring extensions

Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2022-09, Vol.65 (9), p.1775-1794
Hauptverfasser: Hügel, Lidia Angeleri, Cao, Weiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-020-1898-6