The contact process on scale-free geometric random graphs
We study the contact process on a class of geometric random graphs with scale-free degree distribution, defined on a Poisson point process on \(\mathbb{R}^d\). This class includes the age-dependent random connection model and the soft Boolean model. In the ultrasmall regime of these random graphs we...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the contact process on a class of geometric random graphs with scale-free degree distribution, defined on a Poisson point process on \(\mathbb{R}^d\). This class includes the age-dependent random connection model and the soft Boolean model. In the ultrasmall regime of these random graphs we provide exact asymptotics for the non-extinction probability when the rate of infection spread is small and show for a finite version of these graphs that the extinction time is of exponential order in the size of the graph. |
---|---|
ISSN: | 2331-8422 |