On positive integers n with σl(2n+1)<σl(2n)
For any integer l and any positive integer n , let σ l ( n ) = ∑ d ∣ n d l . In 1936, Erdős proved that the set of positive integers n with σ 1 ( n + 1 ) ≥ σ 1 ( n ) has natural density 1 2 . Recently, M. Kobayashi and T. Trudgian showed that the set of positive integers n with σ 1 ( 2 n + 1 ) ≥ σ 1...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2022, Vol.85 (1), p.210-224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any integer
l
and any positive integer
n
, let
σ
l
(
n
)
=
∑
d
∣
n
d
l
. In 1936, Erdős proved that the set of positive integers
n
with
σ
1
(
n
+
1
)
≥
σ
1
(
n
)
has natural density
1
2
. Recently, M. Kobayashi and T. Trudgian showed that the set of positive integers
n
with
σ
1
(
2
n
+
1
)
≥
σ
1
(
2
n
)
has natural density between 0.053 and 0.055. In this paper, for
|
l
|
≥
2
we prove that
σ
l
(
2
n
+
1
)
<
σ
l
(
2
n
)
and
σ
l
(
2
n
-
1
)
<
σ
l
(
2
n
)
for all sufficiently large integers
n
. We also correct a theorem of Erdős. Two conjectures and two problems are posed for further research. |
---|---|
ISSN: | 0031-5303 1588-2829 |
DOI: | 10.1007/s10998-021-00417-7 |