On positive integers n with σl(2n+1)<σl(2n)

For any integer l and any positive integer n , let σ l ( n ) = ∑ d ∣ n d l . In 1936, Erdős proved that the set of positive integers n with σ 1 ( n + 1 ) ≥ σ 1 ( n ) has natural density 1 2 . Recently, M. Kobayashi and T. Trudgian showed that the set of positive integers n with σ 1 ( 2 n + 1 ) ≥ σ 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2022, Vol.85 (1), p.210-224
Hauptverfasser: Wang, Rui-Jing, Chen, Yong-Gao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any integer l and any positive integer n , let σ l ( n ) = ∑ d ∣ n d l . In 1936, Erdős proved that the set of positive integers n with σ 1 ( n + 1 ) ≥ σ 1 ( n ) has natural density 1 2 . Recently, M. Kobayashi and T. Trudgian showed that the set of positive integers n with σ 1 ( 2 n + 1 ) ≥ σ 1 ( 2 n ) has natural density between 0.053 and 0.055. In this paper, for | l | ≥ 2 we prove that σ l ( 2 n + 1 ) < σ l ( 2 n ) and σ l ( 2 n - 1 ) < σ l ( 2 n ) for all sufficiently large integers n . We also correct a theorem of Erdős. Two conjectures and two problems are posed for further research.
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-021-00417-7