Identification of Microcontroller Unit Instruction Execution Using Electromagnetic Leakage and Neural Network Classification

In this article, a novel method is proposed for determining the running state of a system through the classification of electromagnetic interference (EMI) leakage using neural network (NN) models. A modified IEC 61967 measurement platform is used to analyze the EMI signals of a microcontroller unit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electromagnetic compatibility 2022-08, Vol.64 (4), p.930-940
1. Verfasser: Yuan, Shih-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a novel method is proposed for determining the running state of a system through the classification of electromagnetic interference (EMI) leakage using neural network (NN) models. A modified IEC 61967 measurement platform is used to analyze the EMI signals of a microcontroller unit during its operation. A total of 17 NN models are developed and tested to determine the optimal model. The optimal NN model has ungrouped-Top3 and ungrouped-Top5 accuracies of 77.13% and 91.94%, respectively. The ungrouped-Top1 accuracy is improved by 7.53%. They are the highest improvements ever achieved to the best of the author's knowledge.
ISSN:0018-9375
1558-187X
DOI:10.1109/TEMC.2022.3159868