Operation of a 4-bit RSFQ digital-to-analog converter based on a binary split-confluence configuration
One of the unique applications of single-flux-quantum (SFQ) circuitry is a digital-to-analog converter (DAC) of which the output voltage is defined by the Josephson effect. Recently, we have designed and operated rapid single-flux-quantum (RSFQ) DACs with frequency modulation of SFQ pulse sequences....
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-08, Vol.2323 (1), p.12033 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the unique applications of single-flux-quantum (SFQ) circuitry is a digital-to-analog converter (DAC) of which the output voltage is defined by the Josephson effect. Recently, we have designed and operated rapid single-flux-quantum (RSFQ) DACs with frequency modulation of SFQ pulse sequences. In this paper, we report our design and test results of a 4-bit RSFQ-DAC based on the configuration of the “sum of selected bits sequence (Σ-SBS)”. By adjusting the timing margins, in addition to the fabrication using the Nb integration process with the critical current density as high as 10 kA/cm
2
, the maximum output voltage up to 260 μV was demonstrated. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2323/1/012033 |