m-Dissections of some infinite products and related identities
For integers t and m with m ≥ 5 relatively prime to 6 such that 1 ≤ t < m / 2 and gcd ( t , m ) = 1 , define Q ( t , m ) : = ( q 2 t , q m - 2 t , q m ; q m ) ∞ ( q t , q m - t ; q m ) ∞ . The m -dissection of this quintuple product is given in terms of other quintuple products. Hirschhorn’s 5-di...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022, Vol.59 (1), p.313-350 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For integers
t
and
m
with
m
≥
5
relatively prime to 6 such that
1
≤
t
<
m
/
2
and
gcd
(
t
,
m
)
=
1
, define
Q
(
t
,
m
)
:
=
(
q
2
t
,
q
m
-
2
t
,
q
m
;
q
m
)
∞
(
q
t
,
q
m
-
t
;
q
m
)
∞
.
The
m
-dissection of this quintuple product is given in terms of other quintuple products. Hirschhorn’s 5-dissections of Ramanujan’s function
R
=
R
(
q
)
and its reciprocal follow as special cases of this general result. Define the sequence
{
c
n
}
n
≥
0
by
Q
(
t
,
m
)
(
q
m
;
q
m
)
∞
=
:
∑
n
=
0
∞
c
n
q
n
.
It is proven that
n
=
n
0
:
=
1
6
(
m
-
4
)
m
(
m
+
1
)
+
(
m
-
1
)
t
is the largest value of
n
for which
c
n
=
0
(a slight modification to the value of
n
0
is needed if
t
=
(
m
-
1
)
/
2
). Further, it is shown that for
n
>
n
0
, the signs of the
c
n
are periodic with period
m
. In addition, a formula is given for a polynomial
f
t
,
m
(
q
)
(deriving from the
m
-dissection of
Q
(
t
,
m
)) from which a second polynomial
g
t
,
m
(
q
)
of degree
m
-
1
is derived, such that the coefficient of
q
d
(either 1 or -1) in
g
t
,
m
(
q
)
indicates the sign of all the coefficients in the arithmetic progression
c
m
k
+
d
, for
0
≤
d
≤
m
-
1
and
m
k
+
d
>
n
0
. By using methods like those used to prove the results above, other similar results are proved. We re-derive the result of Evans and Ramanathan giving the
m
-dissection of
(
q
;
q
)
∞
in terms of quintuple products for any integer
m
≡
±
1
(
mod
6
)
. Other results include various Lambert series identities, such as the following. Define
A
=
A
(
q
)
:
=
q
2
,
q
5
;
q
7
∞
q
,
q
6
;
q
7
∞
,
B
=
B
(
q
)
:
=
q
3
,
q
4
;
q
7
∞
q
2
,
q
5
;
q
7
∞
.
Then
1
+
14
∑
n
=
1
∞
q
3
n
1
-
q
7
n
-
14
∑
n
=
1
∞
q
4
n
1
-
q
7
n
=
A
3
+
3
B
q
A
-
6
q
B
f
7
2
q
3
,
q
4
;
q
7
∞
,
where
f
i
:
=
(
q
i
;
q
i
)
∞
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-021-00535-3 |