Lower and Upper Bounds for Nonzero Littlewood-Richardson Coefficients

Given a skew diagram \(\gamma/\lambda\), we determine a set of lower and upper bounds that a partition \(\mu\) must satisfy for Littlewood-Richards coefficients \(c^{\gamma}_{\lambda,\mu}>0\). Our algorithm depends on the characterization of \(c^{\gamma}_{\lambda,\mu}\) as the number of Littlewoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Taşkın, Müge, R Bed\ i\ i Gümüş, S\ inan Işık, M \ ikbal Ulv\ i
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a skew diagram \(\gamma/\lambda\), we determine a set of lower and upper bounds that a partition \(\mu\) must satisfy for Littlewood-Richards coefficients \(c^{\gamma}_{\lambda,\mu}>0\). Our algorithm depends on the characterization of \(c^{\gamma}_{\lambda,\mu}\) as the number of Littlewood-Richardson tableau of shape \(\gamma/\lambda\) and content \(\mu\) and uses the (generalized) dominance order on partitions as the main ingredient.
ISSN:2331-8422