Lower and Upper Bounds for Nonzero Littlewood-Richardson Coefficients
Given a skew diagram \(\gamma/\lambda\), we determine a set of lower and upper bounds that a partition \(\mu\) must satisfy for Littlewood-Richards coefficients \(c^{\gamma}_{\lambda,\mu}>0\). Our algorithm depends on the characterization of \(c^{\gamma}_{\lambda,\mu}\) as the number of Littlewoo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a skew diagram \(\gamma/\lambda\), we determine a set of lower and upper bounds that a partition \(\mu\) must satisfy for Littlewood-Richards coefficients \(c^{\gamma}_{\lambda,\mu}>0\). Our algorithm depends on the characterization of \(c^{\gamma}_{\lambda,\mu}\) as the number of Littlewood-Richardson tableau of shape \(\gamma/\lambda\) and content \(\mu\) and uses the (generalized) dominance order on partitions as the main ingredient. |
---|---|
ISSN: | 2331-8422 |