Agreement or Disagreement in Noise-tolerant Mutual Learning?

Deep learning has made many remarkable achievements in many fields but suffers from noisy labels in datasets. The state-of-the-art learning with noisy label method Co-teaching and Co-teaching+ confronts the noisy label by mutual-information between dual-network. However, the dual network always tend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Liu, Jiarun, Jiang, Daguang, Yang, Yukun, Li, Ruirui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning has made many remarkable achievements in many fields but suffers from noisy labels in datasets. The state-of-the-art learning with noisy label method Co-teaching and Co-teaching+ confronts the noisy label by mutual-information between dual-network. However, the dual network always tends to convergent which would weaken the dual-network mechanism to resist the noisy labels. In this paper, we proposed a noise-tolerant framework named MLC in an end-to-end manner. It adjusts the dual-network with divergent regularization to ensure the effectiveness of the mechanism. In addition, we correct the label distribution according to the agreement between dual-networks. The proposed method can utilize the noisy data to improve the accuracy, generalization, and robustness of the network. We test the proposed method on the simulate noisy dataset MNIST, CIFAR-10, and the real-world noisy dataset Clothing1M. The experimental result shows that our method outperforms the previous state-of-the-art method. Besides, our method is network-free thus it is applicable to many tasks. Our code can be found at https://github.com/JiarunLiu/MLC.
ISSN:2331-8422