A novel β-MnO2 and carbon nanotube composite with potent electrochemical properties synthesized using a microwave-assisted method for use in supercapacitor electrodes
In this work, we report the synthesis of a novel β-MnO2/CNT nanocomposite with good electrical conductivity for high-performance supercapacitors via a microwave-assisted method. The structure and surface morphology of the synthesized nanocomposite were investigated by X-ray diffraction (XRD), X-ray...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2022-08, Vol.46 (32), p.15358-15366 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we report the synthesis of a novel β-MnO2/CNT nanocomposite with good electrical conductivity for high-performance supercapacitors via a microwave-assisted method. The structure and surface morphology of the synthesized nanocomposite were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and scanning electron microscopy (SEM). Furthermore, the electrochemical performance of both pure β-MnO2 and the β-MnO2/CNT composite was tested by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCD). The β-MnO2/CNT composite electrode displays an enhanced specific capacitance of 263.8 F g−1 at 0.5 mA cm−2. The β-MnO2/CNT composite shows an outstanding capacitance retention and 98.7% capacitance can be retained after 5000 galvanostatic cycles in a neutral Na2SO4 electrolyte. These remarkable electrochemical characteristics of β-MnO2/CNTs proved that the microwave approach is a powerful tool for creating electrode composites. This study demonstrates the potential performance of nanostructured β-MnO2/CNT electrodes in high-power-density supercapacitor applications. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/d2nj02579e |