Fractional cycle decompositions in hypergraphs

We prove that for any integer k≥2$$ k\ge 2 $$ and ε>0$$ \varepsilon >0 $$, there is an integer ℓ0≥1$$ {\ell}_0\ge 1 $$ such that any k‐uniform hypergraph on n vertices with minimum codegree at least (1/2+ε)n$$ \left(1/2+\varepsilon \right)n $$ has a fractional decomposition into (tight) cycles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2022-10, Vol.61 (3), p.425-443
Hauptverfasser: Joos, Felix, Kühn, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for any integer k≥2$$ k\ge 2 $$ and ε>0$$ \varepsilon >0 $$, there is an integer ℓ0≥1$$ {\ell}_0\ge 1 $$ such that any k‐uniform hypergraph on n vertices with minimum codegree at least (1/2+ε)n$$ \left(1/2+\varepsilon \right)n $$ has a fractional decomposition into (tight) cycles of length ℓ$$ \ell $$ (ℓ$$ \ell $$‐cycles for short) whenever ℓ≥ℓ0$$ \ell \ge {\ell}_0 $$ and n is large in terms of ℓ$$ \ell $$. This is essentially tight. This immediately yields also approximate integral decompositions for these hypergraphs into ℓ$$ \ell $$‐cycles. Moreover, for graphs this even guarantees integral decompositions into ℓ$$ \ell $$‐cycles and solves a problem posed by Glock, Kühn, and Osthus. For our proof, we introduce a new method for finding a set of ℓ$$ \ell $$‐cycles such that every edge is contained in roughly the same number of ℓ$$ \ell $$‐cycles from this set by exploiting that certain Markov chains are rapidly mixing.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.21070