Strong Equivalence of Logic Programs with Ordered Disjunction: A Logical Perspective

Logic Programs with Ordered Disjunction (LPODs) extend classical logic programs with the capability of expressing preferential disjunctions in the heads of program rules. The initial semantics of LPODs, although simple and quite intuitive, is not purely model-theoretic. As a result, certain properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and practice of logic programming 2022-09, Vol.22 (5), p.708-722
Hauptverfasser: CHARALAMBIDIS, ANGELOS, NOMIKOS, CHRISTOS, RONDOGIANNIS, PANOS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Logic Programs with Ordered Disjunction (LPODs) extend classical logic programs with the capability of expressing preferential disjunctions in the heads of program rules. The initial semantics of LPODs, although simple and quite intuitive, is not purely model-theoretic. As a result, certain properties of programs appear non-trivial to formalize in purely logical terms. For example, the current characterization of strong equivalence for LPODs, does not coincide with logical equivalence in some specific logic. This comes in sharp contrast with the well-known characterization of strong equivalence for classical logic programs, which coincides with logical equivalence in the logic of here-and-there. In this paper we obtain a purely logical characterization of strong equivalence for LPODs as logical equivalence in a four-valued logic. Moreover, we provide a new proof of the coNP-completeness of strong equivalence for LPODs, which has an interest in its own right since it relies on the special structure of such programs. Our results are based on the recent logical semantics of LPODs, a fact which we believe indicates that this new semantics may prove to be a useful tool in the further study of LPODs.
ISSN:1471-0684
1475-3081
DOI:10.1017/S1471068422000242