Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations

We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a <...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2022, Vol.146 (2), p.673-718
Hauptverfasser: Dai, Wei, Peng, Shaolong, Qin, Guolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 2
container_start_page 673
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 146
creator Dai, Wei
Peng, Shaolong
Qin, Guolin
description We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a < 2 m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u ≡ 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane—Emden equations in bounded domains.
doi_str_mv 10.1007/s11854-022-0207-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701552800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701552800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-60e0244cf94d47b891d63af4fe187a90133d44b1d52a2f88d4d33249517351d63</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaW2BIYO3Z-lqgqFKkSG1hbbjwBV0nc2gmiEgsOwQk5CQ5FYsVi5m3ee6P5CDlncMUA8uvAWCFFApzHgTzJDsiEyUwmhUyLQzIB4CzJsxyOyUkIawApy5RPyPvSuuHVNg3SfreJ6wWdxzZcUk033jpvKYbetrrHQHVnKL7Z0GNXIXU1Da4Zeuu6QGvnaRhWSeVtbyvdUOcNerrUHX59fM5bg13UhfZmR3E76J_UKTmqdRPw7Fen5Ol2_jhbJMuHu_vZzTKpuMj6JAMELkRVl8KIfFWUzGSprkWNrMh1CSxNjRArZiTXvC4KI0yaclFKlqdy9E7Jxb534912iP-otRt8F08qngOTkhcA0cX2rsq7EDzWKgJotd8pBmqErPaQVYSsRshqbOb7TIje7hn9X_P_oW9fMoIX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701552800</pqid></control><display><type>article</type><title>Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations</title><source>SpringerLink Journals</source><creator>Dai, Wei ; Peng, Shaolong ; Qin, Guolin</creator><creatorcontrib>Dai, Wei ; Peng, Shaolong ; Qin, Guolin</creatorcontrib><description><![CDATA[We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a < 2 m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u ≡ 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane—Emden equations in bounded domains.]]></description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-022-0207-6</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Dynamical Systems and Ergodic Theory ; Estimates ; Existence theorems ; Functional Analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2022, Vol.146 (2), p.673-718</ispartof><rights>The Hebrew University of Jerusalem 2022</rights><rights>The Hebrew University of Jerusalem 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-60e0244cf94d47b891d63af4fe187a90133d44b1d52a2f88d4d33249517351d63</citedby><cites>FETCH-LOGICAL-c246t-60e0244cf94d47b891d63af4fe187a90133d44b1d52a2f88d4d33249517351d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11854-022-0207-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11854-022-0207-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Peng, Shaolong</creatorcontrib><creatorcontrib>Qin, Guolin</creatorcontrib><title>Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description><![CDATA[We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a < 2 m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u ≡ 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane—Emden equations in bounded domains.]]></description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Estimates</subject><subject>Existence theorems</subject><subject>Functional Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaW2BIYO3Z-lqgqFKkSG1hbbjwBV0nc2gmiEgsOwQk5CQ5FYsVi5m3ee6P5CDlncMUA8uvAWCFFApzHgTzJDsiEyUwmhUyLQzIB4CzJsxyOyUkIawApy5RPyPvSuuHVNg3SfreJ6wWdxzZcUk033jpvKYbetrrHQHVnKL7Z0GNXIXU1Da4Zeuu6QGvnaRhWSeVtbyvdUOcNerrUHX59fM5bg13UhfZmR3E76J_UKTmqdRPw7Fen5Ol2_jhbJMuHu_vZzTKpuMj6JAMELkRVl8KIfFWUzGSprkWNrMh1CSxNjRArZiTXvC4KI0yaclFKlqdy9E7Jxb534912iP-otRt8F08qngOTkhcA0cX2rsq7EDzWKgJotd8pBmqErPaQVYSsRshqbOb7TIje7hn9X_P_oW9fMoIX</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dai, Wei</creator><creator>Peng, Shaolong</creator><creator>Qin, Guolin</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2022</creationdate><title>Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations</title><author>Dai, Wei ; Peng, Shaolong ; Qin, Guolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-60e0244cf94d47b891d63af4fe187a90133d44b1d52a2f88d4d33249517351d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Estimates</topic><topic>Existence theorems</topic><topic>Functional Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Peng, Shaolong</creatorcontrib><creatorcontrib>Qin, Guolin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wei</au><au>Peng, Shaolong</au><au>Qin, Guolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2022</date><risdate>2022</risdate><volume>146</volume><issue>2</issue><spage>673</spage><epage>718</epage><pages>673-718</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract><![CDATA[We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a < 2 m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u ≡ 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane—Emden equations in bounded domains.]]></abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-022-0207-6</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2022, Vol.146 (2), p.673-718
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_2701552800
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Analysis
Dynamical Systems and Ergodic Theory
Estimates
Existence theorems
Functional Analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Partial Differential Equations
title Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liouville%20type%20theorems,%20a%20priori%20estimates%20and%20existence%20of%20solutions%20for%20sub-critical%20order%20Lane%E2%80%94Emden%E2%80%94Hardy%20equations&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Dai,%20Wei&rft.date=2022&rft.volume=146&rft.issue=2&rft.spage=673&rft.epage=718&rft.pages=673-718&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-022-0207-6&rft_dat=%3Cproquest_cross%3E2701552800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701552800&rft_id=info:pmid/&rfr_iscdi=true