Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations
We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a <...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2022, Vol.146 (2), p.673-718 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the sub-critical order Lane—Emden—Hardy equations
(0.1)
(
−
Δ
)
m
u
(
x
)
=
u
p
(
x
)
|
x
|
a
in
ℝ
n
with
n
≥ 3,
1
≤
m
<
n
2
, 0 ≤
a
< 2
m
and
p
> 1. We establish Liouville theorems in the ranges
1
<
p
<
n
+
2
m
−
2
a
n
−
2
m
if 0 ≤
a
< 2 and 1 <
p
< +∞ if 2 ≤
a
< 2
m
for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is
u
≡ 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane—Emden equations in bounded domains. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-022-0207-6 |