Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations

We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a <...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2022, Vol.146 (2), p.673-718
Hauptverfasser: Dai, Wei, Peng, Shaolong, Qin, Guolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the sub-critical order Lane—Emden—Hardy equations (0.1) ( − Δ ) m u ( x ) = u p ( x ) | x | a in ℝ n with n ≥ 3, 1 ≤ m < n 2 , 0 ≤ a < 2 m and p > 1. We establish Liouville theorems in the ranges 1 < p < n + 2 m − 2 a n − 2 m if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a < 2 m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u ≡ 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane—Emden equations in bounded domains.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-022-0207-6