Index Sets for Classes of Positive Preorders

We study the complexity of index sets with respect to a universal computable numbering of the family of all positive preorders. Let ≤ c be computable reducibility on positive preorders. For an arbitrary positive preorder R such that the R-induced equivalence ∼R has infinitely many classes, the follo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2022-03, Vol.61 (1), p.30-53
Hauptverfasser: Kalmurzayev, B. S., Bazhenov, N. A., Torebekova, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the complexity of index sets with respect to a universal computable numbering of the family of all positive preorders. Let ≤ c be computable reducibility on positive preorders. For an arbitrary positive preorder R such that the R-induced equivalence ∼R has infinitely many classes, the following results are obtained. The index set for preorders P with R ≤ c P is ∑ 3 0 − complete . A preorder R is said to be self-full if the range of any computable function realizing the reduction R ≤ c R intersects all ∼Rclasses. If L is a non-self-full positive linear preorder, then the index set of preorders P with P ≡ c L is ∑ 3 0 − complete . It is proved that the index set of self-full linear preorders is ∏ 3 0 − complete .
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-022-09673-z