Generative Transfer Learning: Covid-19 Classification with a few Chest X-ray Images

Detection of diseases through medical imaging is preferred due to its non-invasive nature. Medical imaging supports multiple modalities of data that enable a thorough and quick look inside a human body. However, interpreting imaging data is often time-consuming and requires a great deal of human exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Kadam, Suvarna, Vaidya, Vinay G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detection of diseases through medical imaging is preferred due to its non-invasive nature. Medical imaging supports multiple modalities of data that enable a thorough and quick look inside a human body. However, interpreting imaging data is often time-consuming and requires a great deal of human expertise. Deep learning models can expedite interpretation and alleviate the work of human experts. However, these models are data-intensive and require significant labeled images for training. During novel disease outbreaks such as Covid-19, we often do not have the required labeled imaging data, especially at the start of the epidemic. Deep Transfer Learning addresses this problem by using a pretrained model in the public domain, e.g. any variant of either VGGNet, ResNet, Inception, DenseNet, etc., as a feature learner to quickly adapt the target task from fewer samples. Most pretrained models are deep with complex architectures. They are trained with large multi-class datasets such as ImageNet, with significant human efforts in architecture design and hyper parameters tuning. We presented 1 a simpler generative source model, pretrained on a single but related concept, can perform as effectively as existing larger pretrained models. We demonstrate the usefulness of generative transfer learning that requires less compute and training data, for Few Shot Learning (FSL) with a Covid-19 binary classification use case. We compare classic deep transfer learning with our approach and also report FSL results with three settings of 84, 20, and 10 training samples. The model implementation of generative FSL for Covid-19 classification is available publicly at https://github.com/suvarnak/GenerativeFSLCovid.git.
ISSN:2331-8422