Super-polynomial accuracy of multidimensional randomized nets using the median-of-means
We study approximate integration of a function \(f\) over \([0,1]^s\) based on taking the median of \(2r-1\) integral estimates derived from independently randomized \((t,m,s)\)-nets in base \(2\). The nets are randomized by Matousek's random linear scramble with a digital shift. If \(f\) is an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study approximate integration of a function \(f\) over \([0,1]^s\) based on taking the median of \(2r-1\) integral estimates derived from independently randomized \((t,m,s)\)-nets in base \(2\). The nets are randomized by Matousek's random linear scramble with a digital shift. If \(f\) is analytic over \([0,1]^s\), then the probability that any one randomized net's estimate has an error larger than \(2^{-cm^2/s}\) times a quantity depending on \(f\) is \(O(1/\sqrt{m})\) for any \(c |
---|---|
ISSN: | 2331-8422 |