Direct laser cooling of calcium monohydride molecules
We demonstrate optical cycling and laser cooling of a cryogenic buffer-gas beam of calcium monohydride (CaH) molecules. We measure vibrational branching ratios for laser cooling transitions for both excited electronic states A and B . Furthermore, we measure that repeated photon scattering via the A...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2022-08, Vol.24 (8), p.83006 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 83006 |
container_title | New journal of physics |
container_volume | 24 |
creator | Vázquez-Carson, S F Sun, Q Dai, J Mitra, D Zelevinsky, T |
description | We demonstrate optical cycling and laser cooling of a cryogenic buffer-gas beam of calcium monohydride (CaH) molecules. We measure vibrational branching ratios for laser cooling transitions for both excited electronic states
A
and
B
. Furthermore, we measure that repeated photon scattering via the
A
←
X
transition is achievable at a rate of
∼
1.6
×
1
0
6
photons s
−1
and demonstrate interaction-time limited scattering of
∼
200
photons by repumping the largest vibrational decay channel. We also demonstrate a sub-Doppler cooling technique, namely the magnetically assisted Sisyphus effect, and use it to cool the transverse temperature of a molecular beam of CaH. Using a standing wave of light, we lower the transverse temperature from 12.2(1.2) mK to 5.7(1.1) mK. We compare these results to a model that uses optical Bloch equations and Monte Carlo simulations of the molecular beam trajectories. This work establishes a clear pathway for creating a magneto-optical trap (MOT) of CaH molecules. Such a MOT could serve as a starting point for production of ultracold hydrogen gas via dissociation of a trapped CaH cloud. |
doi_str_mv | 10.1088/1367-2630/ac806c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700781641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60edcfd86b9c4c768536205dea53b0a6</doaj_id><sourcerecordid>2700781641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-afcb650942304c61a260dc855a28049a7f44bd96a6eb0075953c7371ea1c0133</originalsourceid><addsrcrecordid>eNp1kDtPw0AQhC0EEiHQU1qioMFk7-lzicIrUiSa9Kfz3jnYcnzmbBf59zgYBQqodjWa_WY1UXRN4J6AUgvCZJpQyWBhUIHEk2h2lE5_7efRRddVAIQoSmeReCyDwz6uTedCjN7XZbONfRGjqbEcdvHON_59b0Np3bjXDofadZfRWWHqzl19z3m0eX7aLF-T9dvLavmwTpBz1SemwFwKyDhlwFESQyVYVEIYqoBnJi04z20mjXQ5QCoywTBlKXGGIBDG5tFqwlpvKt2GcmfCXntT6i_Bh602oS-xdlqCs1hYJfMMOaZSCSYpCOuMYDkYObJuJlYb_Mfgul5XfgjN-L2m6RiuiORkdMHkwuC7LrjimEpAH3rWhyL1oUg99Tye3E4npW9_mE3Vasq10qAYgNStLUbn3R_Of8GfRYOJig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700781641</pqid></control><display><type>article</type><title>Direct laser cooling of calcium monohydride molecules</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vázquez-Carson, S F ; Sun, Q ; Dai, J ; Mitra, D ; Zelevinsky, T</creator><creatorcontrib>Vázquez-Carson, S F ; Sun, Q ; Dai, J ; Mitra, D ; Zelevinsky, T</creatorcontrib><description>We demonstrate optical cycling and laser cooling of a cryogenic buffer-gas beam of calcium monohydride (CaH) molecules. We measure vibrational branching ratios for laser cooling transitions for both excited electronic states
A
and
B
. Furthermore, we measure that repeated photon scattering via the
A
←
X
transition is achievable at a rate of
∼
1.6
×
1
0
6
photons s
−1
and demonstrate interaction-time limited scattering of
∼
200
photons by repumping the largest vibrational decay channel. We also demonstrate a sub-Doppler cooling technique, namely the magnetically assisted Sisyphus effect, and use it to cool the transverse temperature of a molecular beam of CaH. Using a standing wave of light, we lower the transverse temperature from 12.2(1.2) mK to 5.7(1.1) mK. We compare these results to a model that uses optical Bloch equations and Monte Carlo simulations of the molecular beam trajectories. This work establishes a clear pathway for creating a magneto-optical trap (MOT) of CaH molecules. Such a MOT could serve as a starting point for production of ultracold hydrogen gas via dissociation of a trapped CaH cloud.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac806c</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Calcium ; calcium monohydride ; Cooling ; Cryogenic cooling ; diatomic molecule ; Electron states ; Laser cooling ; Lasers ; Molecular beams ; optical cycling ; Optical traps ; Photon scatter ; Photons ; Physics ; precision measurement ; Sisyphus cooling ; Standing waves ; vibrational branching ratio</subject><ispartof>New journal of physics, 2022-08, Vol.24 (8), p.83006</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-afcb650942304c61a260dc855a28049a7f44bd96a6eb0075953c7371ea1c0133</citedby><cites>FETCH-LOGICAL-c448t-afcb650942304c61a260dc855a28049a7f44bd96a6eb0075953c7371ea1c0133</cites><orcidid>0000-0002-2150-721X ; 0000-0003-3682-4901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ac806c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Vázquez-Carson, S F</creatorcontrib><creatorcontrib>Sun, Q</creatorcontrib><creatorcontrib>Dai, J</creatorcontrib><creatorcontrib>Mitra, D</creatorcontrib><creatorcontrib>Zelevinsky, T</creatorcontrib><title>Direct laser cooling of calcium monohydride molecules</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We demonstrate optical cycling and laser cooling of a cryogenic buffer-gas beam of calcium monohydride (CaH) molecules. We measure vibrational branching ratios for laser cooling transitions for both excited electronic states
A
and
B
. Furthermore, we measure that repeated photon scattering via the
A
←
X
transition is achievable at a rate of
∼
1.6
×
1
0
6
photons s
−1
and demonstrate interaction-time limited scattering of
∼
200
photons by repumping the largest vibrational decay channel. We also demonstrate a sub-Doppler cooling technique, namely the magnetically assisted Sisyphus effect, and use it to cool the transverse temperature of a molecular beam of CaH. Using a standing wave of light, we lower the transverse temperature from 12.2(1.2) mK to 5.7(1.1) mK. We compare these results to a model that uses optical Bloch equations and Monte Carlo simulations of the molecular beam trajectories. This work establishes a clear pathway for creating a magneto-optical trap (MOT) of CaH molecules. Such a MOT could serve as a starting point for production of ultracold hydrogen gas via dissociation of a trapped CaH cloud.</description><subject>Calcium</subject><subject>calcium monohydride</subject><subject>Cooling</subject><subject>Cryogenic cooling</subject><subject>diatomic molecule</subject><subject>Electron states</subject><subject>Laser cooling</subject><subject>Lasers</subject><subject>Molecular beams</subject><subject>optical cycling</subject><subject>Optical traps</subject><subject>Photon scatter</subject><subject>Photons</subject><subject>Physics</subject><subject>precision measurement</subject><subject>Sisyphus cooling</subject><subject>Standing waves</subject><subject>vibrational branching ratio</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDtPw0AQhC0EEiHQU1qioMFk7-lzicIrUiSa9Kfz3jnYcnzmbBf59zgYBQqodjWa_WY1UXRN4J6AUgvCZJpQyWBhUIHEk2h2lE5_7efRRddVAIQoSmeReCyDwz6uTedCjN7XZbONfRGjqbEcdvHON_59b0Np3bjXDofadZfRWWHqzl19z3m0eX7aLF-T9dvLavmwTpBz1SemwFwKyDhlwFESQyVYVEIYqoBnJi04z20mjXQ5QCoywTBlKXGGIBDG5tFqwlpvKt2GcmfCXntT6i_Bh602oS-xdlqCs1hYJfMMOaZSCSYpCOuMYDkYObJuJlYb_Mfgul5XfgjN-L2m6RiuiORkdMHkwuC7LrjimEpAH3rWhyL1oUg99Tye3E4npW9_mE3Vasq10qAYgNStLUbn3R_Of8GfRYOJig</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Vázquez-Carson, S F</creator><creator>Sun, Q</creator><creator>Dai, J</creator><creator>Mitra, D</creator><creator>Zelevinsky, T</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2150-721X</orcidid><orcidid>https://orcid.org/0000-0003-3682-4901</orcidid></search><sort><creationdate>20220801</creationdate><title>Direct laser cooling of calcium monohydride molecules</title><author>Vázquez-Carson, S F ; Sun, Q ; Dai, J ; Mitra, D ; Zelevinsky, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-afcb650942304c61a260dc855a28049a7f44bd96a6eb0075953c7371ea1c0133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calcium</topic><topic>calcium monohydride</topic><topic>Cooling</topic><topic>Cryogenic cooling</topic><topic>diatomic molecule</topic><topic>Electron states</topic><topic>Laser cooling</topic><topic>Lasers</topic><topic>Molecular beams</topic><topic>optical cycling</topic><topic>Optical traps</topic><topic>Photon scatter</topic><topic>Photons</topic><topic>Physics</topic><topic>precision measurement</topic><topic>Sisyphus cooling</topic><topic>Standing waves</topic><topic>vibrational branching ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vázquez-Carson, S F</creatorcontrib><creatorcontrib>Sun, Q</creatorcontrib><creatorcontrib>Dai, J</creatorcontrib><creatorcontrib>Mitra, D</creatorcontrib><creatorcontrib>Zelevinsky, T</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vázquez-Carson, S F</au><au>Sun, Q</au><au>Dai, J</au><au>Mitra, D</au><au>Zelevinsky, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct laser cooling of calcium monohydride molecules</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>24</volume><issue>8</issue><spage>83006</spage><pages>83006-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We demonstrate optical cycling and laser cooling of a cryogenic buffer-gas beam of calcium monohydride (CaH) molecules. We measure vibrational branching ratios for laser cooling transitions for both excited electronic states
A
and
B
. Furthermore, we measure that repeated photon scattering via the
A
←
X
transition is achievable at a rate of
∼
1.6
×
1
0
6
photons s
−1
and demonstrate interaction-time limited scattering of
∼
200
photons by repumping the largest vibrational decay channel. We also demonstrate a sub-Doppler cooling technique, namely the magnetically assisted Sisyphus effect, and use it to cool the transverse temperature of a molecular beam of CaH. Using a standing wave of light, we lower the transverse temperature from 12.2(1.2) mK to 5.7(1.1) mK. We compare these results to a model that uses optical Bloch equations and Monte Carlo simulations of the molecular beam trajectories. This work establishes a clear pathway for creating a magneto-optical trap (MOT) of CaH molecules. Such a MOT could serve as a starting point for production of ultracold hydrogen gas via dissociation of a trapped CaH cloud.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac806c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2150-721X</orcidid><orcidid>https://orcid.org/0000-0003-3682-4901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2022-08, Vol.24 (8), p.83006 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2700781641 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Calcium calcium monohydride Cooling Cryogenic cooling diatomic molecule Electron states Laser cooling Lasers Molecular beams optical cycling Optical traps Photon scatter Photons Physics precision measurement Sisyphus cooling Standing waves vibrational branching ratio |
title | Direct laser cooling of calcium monohydride molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20laser%20cooling%20of%20calcium%20monohydride%20molecules&rft.jtitle=New%20journal%20of%20physics&rft.au=V%C3%A1zquez-Carson,%20S%20F&rft.date=2022-08-01&rft.volume=24&rft.issue=8&rft.spage=83006&rft.pages=83006-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac806c&rft_dat=%3Cproquest_cross%3E2700781641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700781641&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_60edcfd86b9c4c768536205dea53b0a6&rfr_iscdi=true |