Direct laser cooling of calcium monohydride molecules
We demonstrate optical cycling and laser cooling of a cryogenic buffer-gas beam of calcium monohydride (CaH) molecules. We measure vibrational branching ratios for laser cooling transitions for both excited electronic states A and B . Furthermore, we measure that repeated photon scattering via the A...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2022-08, Vol.24 (8), p.83006 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate optical cycling and laser cooling of a cryogenic buffer-gas beam of calcium monohydride (CaH) molecules. We measure vibrational branching ratios for laser cooling transitions for both excited electronic states
A
and
B
. Furthermore, we measure that repeated photon scattering via the
A
←
X
transition is achievable at a rate of
∼
1.6
×
1
0
6
photons s
−1
and demonstrate interaction-time limited scattering of
∼
200
photons by repumping the largest vibrational decay channel. We also demonstrate a sub-Doppler cooling technique, namely the magnetically assisted Sisyphus effect, and use it to cool the transverse temperature of a molecular beam of CaH. Using a standing wave of light, we lower the transverse temperature from 12.2(1.2) mK to 5.7(1.1) mK. We compare these results to a model that uses optical Bloch equations and Monte Carlo simulations of the molecular beam trajectories. This work establishes a clear pathway for creating a magneto-optical trap (MOT) of CaH molecules. Such a MOT could serve as a starting point for production of ultracold hydrogen gas via dissociation of a trapped CaH cloud. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ac806c |