Dependence of Energetic Storm Particle Heavy Ion Peak Intensities and Spectra on Source CME Longitude and Speed

We examine variations in energetic storm particle (ESP) heavy ion peak intensities and energy spectra at CME-driven interplanetary shocks. We focus on their dependence with heliolongitude relative to the source region of their associated CMEs, and with CME speed, for events observed in Solar Cycle 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-08, Vol.935 (1), p.32
Hauptverfasser: Santa Fe Dueñas, A., Ebert, R. W., Dayeh, M. A., Desai, M. I., Jian, L. K., Li, G., Smith, C. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine variations in energetic storm particle (ESP) heavy ion peak intensities and energy spectra at CME-driven interplanetary shocks. We focus on their dependence with heliolongitude relative to the source region of their associated CMEs, and with CME speed, for events observed in Solar Cycle 24 at the STEREO-A, STEREO-B, and/or ACE spacecraft. We find that observations of ESP events at 1 au are organized by longitude relative to their CME solar source. The ESP event longitude distribution also showed organization with CME speed. The near-Sun CME speeds (Vi) for these events ranged from ∼560 to 2650 km s−1 while the average CME transit speeds to 1 au were significantly slower. The angular width of the events had a clear threshold at Vi of ∼1300 km s−1, above which events showed significantly larger angular extension compared to events with speeds below. High-speed events also showed larger heavy ion peak intensities near the nose of the shock compared to the flanks while their spectral index was smaller near the nose and larger near the flanks. This organization for events with Vi < 1300 km s−1 was not as clear. These ESP events were observed over a narrower range of longitudes though the heavy ion peak intensities still appeared largest near the nose of the shock. Their heavy ion spectra showed no clear organization with longitude. These observations highlight the impact of spacecraft position relative to the CME source longitude and Vi on the properties of ESP events at 1 au.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac73f5