A new space of generalised functions with bounded variation motivated by fracture mechanics
We introduce a new space of generalised functions with bounded variation to prove the existence of a solution to a minimum problem that arises in the variational approach to fracture mechanics in elastoplastic materials. We study the fine properties of the functions belonging to this space and prove...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2022-11, Vol.29 (6), Article 63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new space of generalised functions with bounded variation to prove the existence of a solution to a minimum problem that arises in the variational approach to fracture mechanics in elastoplastic materials. We study the fine properties of the functions belonging to this space and prove a compactness result. In order to use the Direct Method of the Calculus of Variations we prove a lower semicontinuity result for the functional occurring in this minimum problem. Moreover, we adapt a nontrivial argument introduced by Friedrich to show that every minimizing sequence can be modified to obtain a new minimizing sequence that satisfies the hypotheses of our compactness result. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-022-00793-0 |