A Fortunate Refining Trip Recommendation Model

Personalized travel recommendations propose locations of interest (LOIs) for users. The LOI sequence suggestion is more complicated than a single LOI recommendation. Only a few studies have considered LOI sequence recommendations. Creating a reliable succession of LOIs is difficult. The two LOIs tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-08, Vol.11 (15), p.2459
Hauptverfasser: Abbas, Rizwan, Amran, Gehad Abdullah, Abdulraheem, Ahmed A., Hussain, Irshad, Ghoniem, Rania M., Ewees, Ahmed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Personalized travel recommendations propose locations of interest (LOIs) for users. The LOI sequence suggestion is more complicated than a single LOI recommendation. Only a few studies have considered LOI sequence recommendations. Creating a reliable succession of LOIs is difficult. The two LOIs that follow each other should not be identical or from the same category. It is vital to examine the types of subsequent LOIs when designing a sequence of LOIs. Another issue is that providing precise and accurate location recommendations bores users. It can be tedious and monotonous to look at the same types of LOIs repeatedly. Users may want to change their plans in the middle of a trip. The trip must be dynamic rather than static. To address these concerns in the recommendations, organize a customized journey by looking for continuity, implications, innovation, and surprising (i.e., high levels of amusement) LOIs. We use LOI-likeness and category differences between subsequent LOIs to build sequential LOIs. In our travel recommendations, we leveraged luck and dynamicity. We suggest a fortunate refining trip recommendation (FRTR) to address the issues of identifying and rating user pleasure. An algorithm oof compelling recommendation should offer what we are likely to enjoy and provide spontaneous yet objective components to maintain an open doorway to new worlds and discoveries. In addition, two advanced novel estimations are presented to examine the recommended precision of a sequence of LOIs: regulated precision (RP) and pattern precision (PP). They consider the consistency and order of the LOIs. We tested our strategy using data from a real-world dataset and user journey records from Foursquare dataset. We show that our system outperforms other recommendation algorithms to meet the travel interests of users.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11152459