Dataflow Optimization through Exploring Single-Layer and Inter-Layer Data Reuse in Memory-Constrained Accelerators

Off-chip memory access has become the performance and energy bottleneck in memory-constrained neural network accelerators. To provide a solution for the energy efficient processing of various neural network models, this paper proposes a dataflow optimization method for modern neural networks by expl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-08, Vol.11 (15), p.2356
Hauptverfasser: Ye, Jinghao, Yanagisawa, Masao, Shi, Youhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Off-chip memory access has become the performance and energy bottleneck in memory-constrained neural network accelerators. To provide a solution for the energy efficient processing of various neural network models, this paper proposes a dataflow optimization method for modern neural networks by exploring the opportunity of single-layer and inter-layer data reuse to minimize the amount of off-chip memory access in memory-constrained accelerators. A mathematical analysis of three inter-layer data reuse methods is first presented. Then, a comprehensive exploration to determine the optimal data reuse strategy from single-layer and inter-layer data reuse approaches is proposed. The result shows that when compared to the existing single-layer-based exploration method, SmartShuttle, the proposed approach can achieve up to 20.5% and 32.5% of off-chip memory access reduction for ResNeXt-50 and DenseNet-121, respectively.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11152356