Calogero Type Bounds in Two Dimensions

For a Schrödinger operator on the plane R 2 with electric potential V and an Aharonov–Bohm magnetic field, we obtain an upper bound on the number of its negative eigenvalues in terms of the L 1 ( R 2 ) -norm of V . Similar to Calogero’s bound in one dimension, the result is true under monotonicity a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2022-09, Vol.245 (3), p.1491-1505, Article 1491
Hauptverfasser: Laptev, Ari, Read, Larry, Schimmer, Lukas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a Schrödinger operator on the plane R 2 with electric potential V and an Aharonov–Bohm magnetic field, we obtain an upper bound on the number of its negative eigenvalues in terms of the L 1 ( R 2 ) -norm of V . Similar to Calogero’s bound in one dimension, the result is true under monotonicity assumptions on V . Our method of proof relies on a generalisation of Calogero’s bound to operator-valued potentials. We also establish a similar bound for the Schrödinger operator (without magnetic field) on the half-plane when a Dirichlet boundary condition is imposed and on the whole plane when restricted to antisymmetric functions.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-022-01811-2