Calogero Type Bounds in Two Dimensions
For a Schrödinger operator on the plane R 2 with electric potential V and an Aharonov–Bohm magnetic field, we obtain an upper bound on the number of its negative eigenvalues in terms of the L 1 ( R 2 ) -norm of V . Similar to Calogero’s bound in one dimension, the result is true under monotonicity a...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2022-09, Vol.245 (3), p.1491-1505, Article 1491 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a Schrödinger operator on the plane
R
2
with electric potential
V
and an Aharonov–Bohm magnetic field, we obtain an upper bound on the number of its negative eigenvalues in terms of the
L
1
(
R
2
)
-norm of
V
. Similar to Calogero’s bound in one dimension, the result is true under monotonicity assumptions on
V
. Our method of proof relies on a generalisation of Calogero’s bound to operator-valued potentials. We also establish a similar bound for the Schrödinger operator (without magnetic field) on the half-plane when a Dirichlet boundary condition is imposed and on the whole plane when restricted to antisymmetric functions. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-022-01811-2 |