Dynamics of fractional N-soliton solutions with anomalous dispersions of integrable fractional higher-order nonlinear Schrödinger equations

In this paper, we explore the anomalous dispersive relations, inverse scattering transform and fractional N-soliton solutions of the integrable fractional higher-order nonlinear Schrodinger (fHONLS) equations, containing the fractional Hirota (fHirota), fractional complex mKdV (fcmKdV), and fraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Weng, Weifang, Zhang, Minghe, Yan, Zhenya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we explore the anomalous dispersive relations, inverse scattering transform and fractional N-soliton solutions of the integrable fractional higher-order nonlinear Schrodinger (fHONLS) equations, containing the fractional Hirota (fHirota), fractional complex mKdV (fcmKdV), and fractional Lakshmanan-Porsezian-Daniel (fLPD) equations, etc. The inverse scattering problem can be solved exactly by means of the matrix Riemann-Hilbert problem with simple poles. As a consequence, an explicit formula is found for the fractional N-soliton solutions of the fHONLS equations in the reflectionless case. In particular, we analyze the fractional one-, two- and three-soliton solutions with anomalous dispersions of fHirota and fcmKdV equations. The wave, group, and phase velocities of these envelope fractional 1-soliton solutions are related to the power laws of their amplitudes. These obtained fractional N-soliton solutions may be useful to explain the related super-dispersion transports of nonlinear waves in fractional nonlinear media.
ISSN:2331-8422
DOI:10.48550/arxiv.2208.04493