Dynamics of fractional N-soliton solutions with anomalous dispersions of integrable fractional higher-order nonlinear Schrödinger equations
In this paper, we explore the anomalous dispersive relations, inverse scattering transform and fractional N-soliton solutions of the integrable fractional higher-order nonlinear Schrodinger (fHONLS) equations, containing the fractional Hirota (fHirota), fractional complex mKdV (fcmKdV), and fraction...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we explore the anomalous dispersive relations, inverse scattering transform and fractional N-soliton solutions of the integrable fractional higher-order nonlinear Schrodinger (fHONLS) equations, containing the fractional Hirota (fHirota), fractional complex mKdV (fcmKdV), and fractional Lakshmanan-Porsezian-Daniel (fLPD) equations, etc. The inverse scattering problem can be solved exactly by means of the matrix Riemann-Hilbert problem with simple poles. As a consequence, an explicit formula is found for the fractional N-soliton solutions of the fHONLS equations in the reflectionless case. In particular, we analyze the fractional one-, two- and three-soliton solutions with anomalous dispersions of fHirota and fcmKdV equations. The wave, group, and phase velocities of these envelope fractional 1-soliton solutions are related to the power laws of their amplitudes. These obtained fractional N-soliton solutions may be useful to explain the related super-dispersion transports of nonlinear waves in fractional nonlinear media. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2208.04493 |