Maximal Directional Derivatives in Laakso Space

We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a \(\sigma\)-porous set of points. On the other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Capolli, Marco, Pinamonti, Andrea, Speight, Gareth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a \(\sigma\)-porous set of points. On the other hand, the distance to a fixed point is differentiable everywhere except for a \(\sigma\)-porous set of points. This behavior is completely different to the previously studied settings of Euclidean spaces and Carnot groups.
ISSN:2331-8422