Maximal Directional Derivatives in Laakso Space
We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a \(\sigma\)-porous set of points. On the other...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a \(\sigma\)-porous set of points. On the other hand, the distance to a fixed point is differentiable everywhere except for a \(\sigma\)-porous set of points. This behavior is completely different to the previously studied settings of Euclidean spaces and Carnot groups. |
---|---|
ISSN: | 2331-8422 |