Stochastic MPC with Dual Control for Autonomous Driving with Multi-Modal Interaction-Aware Predictions

We propose a Stochastic MPC (SMPC) approach for autonomous driving which incorporates multi-modal, interaction-aware predictions of surrounding vehicles. For each mode, vehicle motion predictions are obtained by a control model described using a basis of fixed features with unknown weights. The prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Nair, Siddharth H, Govindarajan, Vijay, Lin, Theresa, Wang, Yan, Tseng, Eric H, Borrelli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a Stochastic MPC (SMPC) approach for autonomous driving which incorporates multi-modal, interaction-aware predictions of surrounding vehicles. For each mode, vehicle motion predictions are obtained by a control model described using a basis of fixed features with unknown weights. The proposed SMPC formulation finds optimal controls which serves two purposes: 1) reducing conservatism of the SMPC by optimizing over parameterized control laws and 2) prediction and estimation of feature weights used in interaction-aware modeling using Kalman filtering. The proposed approach is demonstrated on a longitudinal control example, with uncertainties in predictions of the autonomous and surrounding vehicles.
ISSN:2331-8422