The exterior Dirichlet Problem for homogeneous complex \(k\)-Hessian equation
In this paper, we consider the homogeneous complex k-Hessian equation in an exterior domain \(\mathbb{C}^n\setminus\Omega\). We prove the existence and uniqueness of the \(C^{1,1}\) solution by constructing approximating solutions. The key point for us is to establish the uniform gradient estimate a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the homogeneous complex k-Hessian equation in an exterior domain \(\mathbb{C}^n\setminus\Omega\). We prove the existence and uniqueness of the \(C^{1,1}\) solution by constructing approximating solutions. The key point for us is to establish the uniform gradient estimate and the second order estimate. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2208.03794 |