On C-totally real minimal submanifolds of the Sasakian space forms with parallel Ricci tensor
Cheng et al. recently (Results Math 76:144, 2021) established a complete classification of the n -dimensional C -totally real minimal submanifolds with constant sectional curvature in the ( 2 n + 1 ) -dimensional Sasakian space form N 2 n + 1 ( c ) . In this paper, trying to extend the above result,...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-10, Vol.116 (4), Article 163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cheng et al. recently (Results Math 76:144, 2021) established a complete classification of the
n
-dimensional
C
-totally real minimal submanifolds with constant sectional curvature in the
(
2
n
+
1
)
-dimensional Sasakian space form
N
2
n
+
1
(
c
)
. In this paper, trying to extend the above result, we classify
C
-totally real minimal submanifolds in
N
2
n
+
1
(
c
)
with parallel Ricci tensor for
n
=
3
,
4
. In particular, we show that 4-dimensional
C
-totally real minimal Einstein submanifolds in
N
9
(
c
)
are of constant sectional curvature. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-022-01306-5 |