On C-totally real minimal submanifolds of the Sasakian space forms with parallel Ricci tensor

Cheng et al. recently (Results Math 76:144, 2021) established a complete classification of the n -dimensional C -totally real minimal submanifolds with constant sectional curvature in the ( 2 n + 1 ) -dimensional Sasakian space form N 2 n + 1 ( c ) . In this paper, trying to extend the above result,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-10, Vol.116 (4), Article 163
Hauptverfasser: Hu, Zejun, Li, Meng, Xing, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cheng et al. recently (Results Math 76:144, 2021) established a complete classification of the n -dimensional C -totally real minimal submanifolds with constant sectional curvature in the ( 2 n + 1 ) -dimensional Sasakian space form N 2 n + 1 ( c ) . In this paper, trying to extend the above result, we classify C -totally real minimal submanifolds in N 2 n + 1 ( c ) with parallel Ricci tensor for n = 3 , 4 . In particular, we show that 4-dimensional C -totally real minimal Einstein submanifolds in N 9 ( c ) are of constant sectional curvature.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-022-01306-5