The effect of morphology on electrochemical hydrogen evolution reaction of ReSe2 nano-structures

Transition metal dichalcogenides (TMDs), such as rhenium diselenide, have currently attracted a lot of attention as one of the novel candidates of the TMD family. However, sample fabrication remains a significant problem due to poor electrochemical performance, and synthesizing ReSe2 with outstandin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2022-07, Vol.46 (31), p.14894-14902
Hauptverfasser: Sultana, Fozia, Mushtaq, Muhammad, Ferdous, Tabassum, Wang, Jiahui, Lin, Ma, Zaman, Abid, Althubeiti, Khaled, Aljohani, Mohammed, Yang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal dichalcogenides (TMDs), such as rhenium diselenide, have currently attracted a lot of attention as one of the novel candidates of the TMD family. However, sample fabrication remains a significant problem due to poor electrochemical performance, and synthesizing ReSe2 with outstanding tailored features to encounter the high-level demands of noble metal replacement persists a challenge. As a result, we suggest a method for the production of ReSe2 with controllable morphologies by simply changing the Re : Se ratio of the precursors. Herein, two distinct morphologies i.e. nanoparticles and nanobelts of ReSe2 were synthesized using a hot injection approach. Phase study and modes of vibrations of both samples were investigated using X-ray diffraction crystallography (XRD) and Raman spectroscopy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed ReSe2 nanoparticle and nanobelt morphologies. The nanobelts ReSe2 outperformed by achieving a current density of 10 mA cm−2 at an over-potential of 96 mV whereas ReSe2 nanoparticles attained a current density of 10 mA cm−2 at 174 mV. The remarkable electrocatalytic performance of ReSe2 nanobelts is due to their unique morphology, which allows for quick charge transfer kinetics and incredible stability even after 1000 CV cycles.
ISSN:1144-0546
1369-9261
DOI:10.1039/d2nj02433k