Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem
Studying elliptic measure data problem with strongly nonlinear operator whose growth is described by the means of fully anisotropic N‐function, we prove the uniqueness for a broad class of measures. In order to provide it, the framework of capacities in fully anisotropic Orlicz–Sobolev spaces is dev...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2022-09, Vol.45 (14), p.8503-8527 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studying elliptic measure data problem with strongly nonlinear operator whose growth is described by the means of fully anisotropic N‐function, we prove the uniqueness for a broad class of measures. In order to provide it, the framework of capacities in fully anisotropic Orlicz–Sobolev spaces is developed and the capacitary characterization of a bounded measure is given. Moreover, we give an example of an anisotropic Young function Φ, such that
|ξ|p≲Φ(ξ)≲|ξ|plogα(1+|ξ|), with arbitrary p ≥ 1, α > 0, but so irregularly growing that the Orlicz–Sobolev‐type space generated by Φ indispensably requires fully anisotropic tools to be handled. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.7278 |