Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem

Studying elliptic measure data problem with strongly nonlinear operator whose growth is described by the means of fully anisotropic N‐function, we prove the uniqueness for a broad class of measures. In order to provide it, the framework of capacities in fully anisotropic Orlicz–Sobolev spaces is dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-09, Vol.45 (14), p.8503-8527
Hauptverfasser: Chlebicka, Iwona, Nayar, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studying elliptic measure data problem with strongly nonlinear operator whose growth is described by the means of fully anisotropic N‐function, we prove the uniqueness for a broad class of measures. In order to provide it, the framework of capacities in fully anisotropic Orlicz–Sobolev spaces is developed and the capacitary characterization of a bounded measure is given. Moreover, we give an example of an anisotropic Young function Φ, such that |ξ|p≲Φ(ξ)≲|ξ|plogα(1+|ξ|), with arbitrary p ≥ 1, α > 0, but so irregularly growing that the Orlicz–Sobolev‐type space generated by Φ indispensably requires fully anisotropic tools to be handled.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.7278