Fast Nonnegative Tensor Factorizations with Tensor Train Model
Tensor train model is a low-rank approximation for multidimensional data. In this article we demonstrate how it can be succesfully used for fast computation of nonnegative tensor train, nonnegative canonical and nonnegative Tucker factorizations. The proposed approaches can be incorporated in wide r...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2022-04, Vol.43 (4), p.882-894 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tensor train model is a low-rank approximation for multidimensional data. In this article we demonstrate how it can be succesfully used for fast computation of nonnegative tensor train, nonnegative canonical and nonnegative Tucker factorizations. The proposed approaches can be incorporated in wide range of methods to solve big data problems. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080222070228 |