Numerical differentiation on scattered data through multivariate polynomial interpolation

We discuss a pointwise numerical differentiation formula on multivariate scattered data, based on the coefficients of local polynomial interpolation at Discrete Leja Points, written in Taylor’s formula monomial basis. Error bounds for the approximation of partial derivatives of any order compatible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2022-09, Vol.62 (3), p.773-801
Hauptverfasser: Dell’Accio, Francesco, Di Tommaso, Filomena, Siar, Najoua, Vianello, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss a pointwise numerical differentiation formula on multivariate scattered data, based on the coefficients of local polynomial interpolation at Discrete Leja Points, written in Taylor’s formula monomial basis. Error bounds for the approximation of partial derivatives of any order compatible with the function regularity are provided, as well as sensitivity estimates to functional perturbations, in terms of the inverse Vandermonde coefficients that are active in the differentiation process. Several numerical tests are presented showing the accuracy of the approximation.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-021-00897-6