Comparison theorems for splittings of M-matrices in (block) Hessenberg form

Some variants of the (block) Gauss–Seidel iteration for the solution of linear systems with M -matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2022-09, Vol.62 (3), p.849-867
Hauptverfasser: Gemignani, Luca, Poloni, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some variants of the (block) Gauss–Seidel iteration for the solution of linear systems with M -matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix ρ ( P GS ) ≥ ρ ( P S ) ≥ ρ ( P AGS ) , where P GS , P S , P AGS are the iteration matrices of the Gauss–Seidel, staircase, and anti-Gauss–Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-021-00899-4