On -Metric Spaces and the -Gromov-Hausdorff Distance

For each given we investigate certain sub-family of the collection of all compact metric spaces which are characterized by the satisfaction of a strengthened form of the triangle inequality which encompasses, for example, the strong triangle inequality satisfied by ultrametric spaces. We identify a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2022, Vol.14 (3), p.173-223
Hauptverfasser: Mémoli, Facundo, Wan, Zhengchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For each given we investigate certain sub-family of the collection of all compact metric spaces which are characterized by the satisfaction of a strengthened form of the triangle inequality which encompasses, for example, the strong triangle inequality satisfied by ultrametric spaces. We identify a one parameter family of Gromov-Hausdorff like distances on and study geometric and topological properties of these distances as well as the stability of certain canonical projections . For the collection of all compact ultrametric spaces, which corresponds to the case of the family , we explore a one parameter family of interleaving-type distances and reveal their relationship with .
ISSN:2070-0466
2070-0474
DOI:10.1134/S2070046622030013