The p-Lagrangian relaxation for separable nonconvex MIQCQP problems

This paper presents a novel technique to compute Lagrangian bounds for nonconvex mixed-integer quadratically constrained quadratic programming problems presenting a separable structure (i.e., a separable problems) such as those arising in deterministic equivalent representations of two-stage stochas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2022-09, Vol.84 (1), p.43-76
Hauptverfasser: Andrade, Tiago, Belyak, Nikita, Eberhard, Andrew, Hamacher, Silvio, Oliveira, Fabricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel technique to compute Lagrangian bounds for nonconvex mixed-integer quadratically constrained quadratic programming problems presenting a separable structure (i.e., a separable problems) such as those arising in deterministic equivalent representations of two-stage stochastic programming problems. In general, the nonconvex nature of these models still poses a challenge to the available solvers, which do not consistently perform well for larger-scale instances. Therefore, we propose an appealing alternative algorithm that allows for overcoming computational performance issues. Our novel technique, named the p -Lagrangian decomposition, is a decomposition method that combines Lagrangian decomposition with mixed-integer programming-based relaxations. These relaxations are obtained using the reformulated normalised multiparametric disaggregation technique and can be made arbitrarily precise by means of a precision parameter p . We provide a technical analysis showing the convergent behaviour of the approach as the approximation is made increasingly precise. We observe that the proposed method presents significant reductions in computational time when compared with a previously proposed techniques in the literature and the direct employment of a commercial solver. Moreover, our computational experiments show that the employment of a simple heuristic can recover solutions with small duality gaps.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01138-y