Forecasting Software Using Laplacian AR Model based on Bootstrap-Reversible Jump MCMC: Application on Stock Price Data

The application of the Bootstrap-Metropolis-Hastings algorithm is limited to fixed dimension models. In various fields, data often has a variable dimension model. The Laplacian autoregressive (AR) model includes a variable dimension model so that the Bootstrap-Metropolis-Hasting algorithm cannot be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Webology 2021-09, Vol.18 (Special Issue 04), p.1045-1055
Hauptverfasser: arman, Sup, Hairun, Yahya, Alhaddad, Idrus, Machmud, Tedy, Suharna, Hery, Rusiman, Mohd Saifullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of the Bootstrap-Metropolis-Hastings algorithm is limited to fixed dimension models. In various fields, data often has a variable dimension model. The Laplacian autoregressive (AR) model includes a variable dimension model so that the Bootstrap-Metropolis-Hasting algorithm cannot be applied. This article aims to develop a Bootstrap reversible jump Markov Chain Monte Carlo (MCMC) algorithm to estimate the Laplacian AR model. The parameters of the Laplacian AR model were estimated using a Bayesian approach. The posterior distribution has a complex structure so that the Bayesian estimator cannot be calculated analytically. The Bootstrap-reversible jump MCMC algorithm was applied to calculate the Bayes estimator. This study provides a procedure for estimating the parameters of the Laplacian AR model. Algorithm performance was tested using simulation studies. Furthermore, the algorithm is applied to the finance sector to predict stock price on the stock market. In general, this study can be useful for decision makers in predicting future events. The novelty of this study is the triangulation between the bootstrap algorithm and the reversible jump MCMC algorithm. The Bootstrap-reversible jump MCMC algorithm is useful especially when the data is large and the data has a variable dimension model. The study can be extended to the Laplacian Autoregressive Moving Average (ARMA) model.
ISSN:1735-188X
1735-188X
DOI:10.14704/WEB/V18SI04/WEB18180