Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning

Industrial robots are widely used in various areas owing to their greater degrees of freedom (DOFs) and larger operation space compared with traditional frame movement systems involving sliding and rotational stages. However, the geometrical transfer of joint kinematic errors and the relatively weak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in manufacturing 2022-09, Vol.10 (3), p.397-410
Hauptverfasser: Kong, Ling-Bao, Yu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Industrial robots are widely used in various areas owing to their greater degrees of freedom (DOFs) and larger operation space compared with traditional frame movement systems involving sliding and rotational stages. However, the geometrical transfer of joint kinematic errors and the relatively weak rigidity of industrial robots compared with frame movement systems decrease their absolute kinematic accuracy, thereby limiting their further application in ultra-precision manufacturing. This imposes a stringent requirement for improving the absolute kinematic accuracy of industrial robots in terms of the position and orientation of the robot arm end. Current measurement and compensation methods for industrial robots either require expensive measuring systems, producing positioning or orientation errors, or offer low measurement accuracy. Herein, a kinematic calibration method for an industrial robot using an artifact with a hybrid spherical and ellipsoid surface is proposed. A system with submicrometric precision for measuring the position and orientation of the robot arm end is developed using laser displacement sensors. Subsequently, a novel kinematic error compensating method involving both a residual learning algorithm and a neural network is proposed to compensate for nonlinear errors. A six-layer recurrent neural network (RNN) is designed to compensate for the kinematic nonlinear errors of a six-DOF industrial robot. The results validate the feasibility of the proposed method for measuring the kinematic errors of industrial robots, and the compensation method based on the RNN improves the accuracy via parameter fitting. Experimental studies show that the measuring system and compensation method can reduce motion errors by more than 30%. The present study provides a feasible and economic approach for measuring and improving the motion accuracy of an industrial robot at the submicrometric measurement level.
ISSN:2095-3127
2195-3597
DOI:10.1007/s40436-022-00400-6