Optimizing Attention for Sequence Modeling via Reinforcement Learning

Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-08, Vol.33 (8), p.3612-3621
Hauptverfasser: Fei, Hao, Zhang, Yue, Ren, Yafeng, Ji, Donghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3621
container_issue 8
container_start_page 3612
container_title IEEE transaction on neural networks and learning systems
container_volume 33
creator Fei, Hao
Zhang, Yue
Ren, Yafeng
Ji, Donghong
description Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. In this study, we consider using deep reinforcement learning to automatically optimize attention distribution during the minimization of end task training losses. With more sufficient environment states, iterative actions are taken to adjust attention weights so that more informative words receive more attention automatically. Results on different tasks and different attention networks demonstrate that our model is of great effectiveness in improving the end task performances, yielding more reasonable attention distribution. The more in-depth analysis further reveals that our retrofitting method can help to bring explainability for baseline attention.
doi_str_mv 10.1109/TNNLS.2021.3053633
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2697569522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9352534</ieee_id><sourcerecordid>2488554296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7bdc6a1d066cc3b517f0287065febc36f8f966def44644f590749f3287fa337b3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbFH_gIIEvHhp3c_Z7LGU-gG1glbwtiSbWdnSJDVJBf31bm3twbnMwPvMMDyEnDM6ZIyam_lsNn0ZcsrZUFAlQIgD0ucM-ICLND3cz_qtR87adkFjAVUgzTHpCaEANOg-mTytulCG71C9J6Ouw6oLdZX4ukle8GONlcPksS5wuck_Q5Y8Y6hi6rCMaDLFrKlidEqOfLZs8WzXT8jr7WQ-vh9Mn-4exqPpwPGUdQOdFw4yVlAA50SumPaUp5qC8pg7AT71BqBALyVI6ZWhWhovIuIzIXQuTsj19u6qqeN3bWfL0DpcLrMK63VruUxTpSQ3ENGrf-iiXjdV_M5yMFqBUZxHim8p19Rt26C3qyaUWfNlGbUbz_bXs914tjvPcelyd3qdl1jsV_6sRuBiCwRE3MdGKK6EFD_uyIBu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697569522</pqid></control><display><type>article</type><title>Optimizing Attention for Sequence Modeling via Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Fei, Hao ; Zhang, Yue ; Ren, Yafeng ; Ji, Donghong</creator><creatorcontrib>Fei, Hao ; Zhang, Yue ; Ren, Yafeng ; Ji, Donghong</creatorcontrib><description>Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. In this study, we consider using deep reinforcement learning to automatically optimize attention distribution during the minimization of end task training losses. With more sufficient environment states, iterative actions are taken to adjust attention weights so that more informative words receive more attention automatically. Results on different tasks and different attention networks demonstrate that our model is of great effectiveness in improving the end task performances, yielding more reasonable attention distribution. The more in-depth analysis further reveals that our retrofitting method can help to bring explainability for baseline attention.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3053633</identifier><identifier>PMID: 33566767</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Attention mechanism ; Deep learning ; deep reinforcement learning (RL) ; Iterative methods ; Learning ; Machine learning ; Machine translation ; Minimization ; Modelling ; natural language processing (NLP) ; neural networks ; Optimization ; Reinforcement ; Reinforcement learning ; Retrofitting ; Sentiment analysis ; Task analysis ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-08, Vol.33 (8), p.3612-3621</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-7bdc6a1d066cc3b517f0287065febc36f8f966def44644f590749f3287fa337b3</citedby><cites>FETCH-LOGICAL-c281t-7bdc6a1d066cc3b517f0287065febc36f8f966def44644f590749f3287fa337b3</cites><orcidid>0000-0002-5214-2268 ; 0000-0002-0291-4733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9352534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9352534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33566767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fei, Hao</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ren, Yafeng</creatorcontrib><creatorcontrib>Ji, Donghong</creatorcontrib><title>Optimizing Attention for Sequence Modeling via Reinforcement Learning</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. In this study, we consider using deep reinforcement learning to automatically optimize attention distribution during the minimization of end task training losses. With more sufficient environment states, iterative actions are taken to adjust attention weights so that more informative words receive more attention automatically. Results on different tasks and different attention networks demonstrate that our model is of great effectiveness in improving the end task performances, yielding more reasonable attention distribution. The more in-depth analysis further reveals that our retrofitting method can help to bring explainability for baseline attention.</description><subject>Attention mechanism</subject><subject>Deep learning</subject><subject>deep reinforcement learning (RL)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Minimization</subject><subject>Modelling</subject><subject>natural language processing (NLP)</subject><subject>neural networks</subject><subject>Optimization</subject><subject>Reinforcement</subject><subject>Reinforcement learning</subject><subject>Retrofitting</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbFH_gIIEvHhp3c_Z7LGU-gG1glbwtiSbWdnSJDVJBf31bm3twbnMwPvMMDyEnDM6ZIyam_lsNn0ZcsrZUFAlQIgD0ucM-ICLND3cz_qtR87adkFjAVUgzTHpCaEANOg-mTytulCG71C9J6Ouw6oLdZX4ukle8GONlcPksS5wuck_Q5Y8Y6hi6rCMaDLFrKlidEqOfLZs8WzXT8jr7WQ-vh9Mn-4exqPpwPGUdQOdFw4yVlAA50SumPaUp5qC8pg7AT71BqBALyVI6ZWhWhovIuIzIXQuTsj19u6qqeN3bWfL0DpcLrMK63VruUxTpSQ3ENGrf-iiXjdV_M5yMFqBUZxHim8p19Rt26C3qyaUWfNlGbUbz_bXs914tjvPcelyd3qdl1jsV_6sRuBiCwRE3MdGKK6EFD_uyIBu</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Fei, Hao</creator><creator>Zhang, Yue</creator><creator>Ren, Yafeng</creator><creator>Ji, Donghong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5214-2268</orcidid><orcidid>https://orcid.org/0000-0002-0291-4733</orcidid></search><sort><creationdate>20220801</creationdate><title>Optimizing Attention for Sequence Modeling via Reinforcement Learning</title><author>Fei, Hao ; Zhang, Yue ; Ren, Yafeng ; Ji, Donghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7bdc6a1d066cc3b517f0287065febc36f8f966def44644f590749f3287fa337b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>Deep learning</topic><topic>deep reinforcement learning (RL)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Minimization</topic><topic>Modelling</topic><topic>natural language processing (NLP)</topic><topic>neural networks</topic><topic>Optimization</topic><topic>Reinforcement</topic><topic>Reinforcement learning</topic><topic>Retrofitting</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Fei, Hao</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ren, Yafeng</creatorcontrib><creatorcontrib>Ji, Donghong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fei, Hao</au><au>Zhang, Yue</au><au>Ren, Yafeng</au><au>Ji, Donghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Attention for Sequence Modeling via Reinforcement Learning</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>33</volume><issue>8</issue><spage>3612</spage><epage>3621</epage><pages>3612-3621</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. In this study, we consider using deep reinforcement learning to automatically optimize attention distribution during the minimization of end task training losses. With more sufficient environment states, iterative actions are taken to adjust attention weights so that more informative words receive more attention automatically. Results on different tasks and different attention networks demonstrate that our model is of great effectiveness in improving the end task performances, yielding more reasonable attention distribution. The more in-depth analysis further reveals that our retrofitting method can help to bring explainability for baseline attention.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33566767</pmid><doi>10.1109/TNNLS.2021.3053633</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5214-2268</orcidid><orcidid>https://orcid.org/0000-0002-0291-4733</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2022-08, Vol.33 (8), p.3612-3621
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2697569522
source IEEE Electronic Library (IEL)
subjects Attention mechanism
Deep learning
deep reinforcement learning (RL)
Iterative methods
Learning
Machine learning
Machine translation
Minimization
Modelling
natural language processing (NLP)
neural networks
Optimization
Reinforcement
Reinforcement learning
Retrofitting
Sentiment analysis
Task analysis
Training
title Optimizing Attention for Sequence Modeling via Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Attention%20for%20Sequence%20Modeling%20via%20Reinforcement%20Learning&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Fei,%20Hao&rft.date=2022-08-01&rft.volume=33&rft.issue=8&rft.spage=3612&rft.epage=3621&rft.pages=3612-3621&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3053633&rft_dat=%3Cproquest_RIE%3E2488554296%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697569522&rft_id=info:pmid/33566767&rft_ieee_id=9352534&rfr_iscdi=true