Optimizing Attention for Sequence Modeling via Reinforcement Learning

Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-08, Vol.33 (8), p.3612-3621
Hauptverfasser: Fei, Hao, Zhang, Yue, Ren, Yafeng, Ji, Donghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. In this study, we consider using deep reinforcement learning to automatically optimize attention distribution during the minimization of end task training losses. With more sufficient environment states, iterative actions are taken to adjust attention weights so that more informative words receive more attention automatically. Results on different tasks and different attention networks demonstrate that our model is of great effectiveness in improving the end task performances, yielding more reasonable attention distribution. The more in-depth analysis further reveals that our retrofitting method can help to bring explainability for baseline attention.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2021.3053633